
FIFTH INTERNATIONAL CONGRESS ON SOUND AND VIBRATION

DECEMBER 15-18, 1997
ADELAIDE, SOUTH AUSTRALIA

Invited Paper

IMPROVED METHOD FOR ESTIMATION OF
COMPLEX MODULUS AND DAMPING

Svend Gade, Application Specialist. Niels Johan Wismer, Application

Bri.iel& Kjzx, Skodsborgvej 307,2850 Naxurn, Denmark

Specialist

ABSTRACT

This paper introduces an improved method for estimation af Complex Modulus as a continous
fimction of frequency. The classical method can nomally be used up to a frequency which is a
factor of 2 to 3 below the first resonant frequency for the testsetup. For the proposed improved
method the frequency range is extended to well above the first resonant frequency for the test-
setup. The method is verified by use of the well known 3 dB bandwidth method.

1. INTRODUCTION

One of the most fimdamental relations governing the dynamic properties of materials is Hooke’s
law of elasticity. Hooke’s law (see Fig. 1) states that there is a linear relationship between stress
(a) and strain (G). Stress is force per unit area, i.e. pressure, and it is measured in Newtons per
square meter (N/m2) also called Pascal (Pa). Strain is relative deformation, i.e. deformation
divided by the original dimensions, and is therefore dimensionless. The ratio between stress and
stmin, E is called the modulus of elasticity or Young’s modulus, and as for stress, it is measured
in Pascal. Like mass density, the modulus of elasticity is a material constant. For steel it is
approximately 200 GPa, and for alurniniurn it is approximately 70 GPa. Hooke’s law describes
many materials very accurately, especially metals which have relatively low damping coeffi-
cients. For many other materials, such as polymers and wood, the damping is so large that it
cannot be ignored.
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Fig. 1. Hmkeh law

2. VISCOELASTIC MATERIALS

Viscoelastic models are often introduced when Hooke’s law is deemed inaccurate. A few basic
models are shown in the following:
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Fig.2. Spring and dushpot models of various viscoelastic materials

A dot above a symbol indicates time derivative. Hooke’s law describes purely elastic materials,
and Newton’s law describes purely viscous materials. To make these equations more intuitively
understandable, “spring and dashpot” models can be drawn (see Fig. 2).

Many more viscoelastic models can be constructed by adding more springs and/or dashpots, in
series or in parallel, to the models above.
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Fig. 3. Simple set-up fir measurenwnt of complex modulus

The viscoelastic models introduce a time, and therefore also a frequency, dependency between
stress and strain. If we look at the frequency domain representation of the relations, we get the
following equations:

Hooke: O(jm) = Ex&(j(o) Newton: o ~~) =~on x E Qm)

Maxwell: c @BJ= ~ x E(I-CO) Kelvin: a ~“6))= @q +E) x &(jCo)
j(oq + E

Where j is the imaginary number, and co is the angular frequency in rad/s. The presence of j
indicates that stress and strain are not usually in phase for viscoelastic materials. The advantage
of the frequency domain representation is that we can return to the simple linear relationship
used for Hooke’s law. We just have to introduce the complex modulus of elasticity, Ec, which
is a complex function of frequency.

EC= EC(CD)= * (1)

where EC is defined as follows:

Hooke: llc = E Newton: 13C=jml

Kelvin: l?c =jaq + E

Note that for all viscoelastic models, the magnitude of Ec, i.e. the absolute Youngs’s modulus,
Illc 1,will either be constant or increase as a function of frequency. The imagina~ part, Irn(llc)
of Ec divided by the real part, Re(llc) of Ec is referred to as the Loss Factor and is an indicator
of the damping of the material. A number of other damping descriptors are described in Ref. [2].

3. MATERIAL PROPERTIES CONTRA SYSTEM PROPERTIES

When we want to measure the modulus of elasticity, the first method that comes to mind is a
simple displacement versus force measurement (i.e. “mobility”, compliance, receptance, flexi-
bility or admittance measurement) on a block of the material of interest. Knowing the dimen-
sions of the test specimen, the complex modulus can be calculated based on a simple frequency
response fimction (FRF) measurement of compliance:

Ec = L/A x 1 / lVW’(co)where (2)



l?.(o) = AL(oJ)/Force (w) (3)

L is once again the length, and A is the cross-sectional area of the test specimen.

This is the so-called non-resonant method for the estimation of complex modulus (see Ref. [3] ).
See Ref.[1] for an introduction to frequency response measurements on simple SDOF systems.
At low frequencies the method works really well, but at higher fi-equencies the mass of the test
specimen and of the other components will begin to affect the measurement. Put in another way,
at higher frequencies, the inertial forces cannot be ignored anymore. So as we get close to the
first resonance frequency, the FRF is no longer only an expression of the material properties,
but also of the system properties of the complete test specimen and test setup. Here is where
the improved method comes in, see Ref. [5]. Since we know the geometry of the specimen, it
is possible to find an analytic solution of how this simple system vibrates. If we assume that the
metal components on top of the test specimen can be described as a lumped mass, the theoretical
compliance of this simple system can be shown to be

Compliance (co) =
AL(m)

Force (co) =
(4)

sin (p)

@2(M/’p x Cos (p) -Mx sin (p))

~=E
(5)

p is the mass density of the test material (kg/m3), MSis the mass of the test specimen (A x L x p),
M is the lumped mass of the metal components on top of the specimen, and 13Cis the complex
modulus of elasticity of the specimen material.

The compliance (AL/Force) is found from the frequency response measurement, and A, L, p,
and M can be measured with great accuracy. This leaves only one unknown in equations (4)
and (5), namely Ec, which can be found by a simple (Newton) iterative process.

The modljied non-resonant method can be said to peel the system characteristics ji-om the

where

measurement data, leaving only the material properties.
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Fig.4. l%st setup fir the measumnwmt of complex modulus
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Fig.5. Magnitude of complex modulus and loss ftior found using equuti.on (2)

4. PRACTICAL MEASUREMENT

To pertlorm the measurement, the test set-up shown in Fig. 4 was used.

The test specimen was made of rubber, it was cylindrical, with a diameter of 20 mm and a
height of 60 mm. The following parameters were either measured or calculated.

● A=314mm2

● L=60mm

“ p = 1058 kg/m3

● it!f~= 19.9g

● A4=llg

The first measurement (Fig. 5) was at low frequencies (100 to 300 Hz). The upper graph shows
the User-Definable Display Function (UDDF) CMPLX_MDLS 1 which is an inverted HI fre-
quency response function that has been scaled by the factor L/A, i.e. using equation (2). The
lower graph shows the LOSS_FACTORl, which is the ratio between the imaginary and real
parts of the Complex Modulus.

Both curves look trustworthy, but as stated earlier, no viscoelastic model will allow for a
decrease of the magnitude of the complex modulus of elasticity as a function of frequency.

If we look at Fig. 6, which shows a measurement at higher frequencies (100 to 900 Hz), the
compliance frequency response function clearly indicates that there is a resonance at 552 Hz.
So we can see that the shapes of CMPLX_MDLS 1 and LOSSFACTOR1 are, at least, partly due
to the fact that we are getting close to the first resonance frequency.
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Fig. 7 shows the two UDDFS CMPLX_MDLS 1 and LOSS_FACTORl, and at this higher
frequency range, it can clearly be seen that both are strongly affected by the resonance. The
inertial forces disturb the measurement even at much lower frequencies than the resonance
frequency, and the question is whether the displayed values can be trusted even at 100 Hz. What
is needed is a method to remove the effect of the inertial forces, and this is precisely what the
modified non-resonant method described earlier will do.

The Bri.iel&K@r Multichannel Analysis System T~e 3550 can perform the computations
needed to compensate for the system characteristics of this simple system using equations (4)
and (5). See Ref. [4]. The result of the calculations of CMPLX_MDLS and LOSS_FACTOR,
which are described much more in details in Ref. [6], are shown in Fig. 8. The two curves look
very different from the curves in Fig.7. The effect of the resonance cannot be seen anymore!
The magnitude of the complex modulus of elasticity can be seen to be slightly increasing, and
is about 40 MPa. The loss factor is very close to 0.1 in the fi-equency range from 100 to 900 Hz.
In the 100 to 900 Hz frequency range the complex modulus of elasticity can be said to be
approximately:

Ec = 40A4Pa + 4A4Pa xj

At higher frequencies, this method is also very sensitive to errors in the analytical model; if the
real system deviates too much from the model, then errors will be introduced. All system
parameters (A, L, p MS,M) must be measured with high accuracy.

Finally, we can check whether the loss factor is consistent with the loss factor found by the
traditional resonance bandwidth method. This method states that the loss factor at a resonance
is approximately equal to the half-power bandwidth divided by the resonance frequency. The
UDAI LF_AT_R13Swill perilorrnthis calculation at the resonance which is selected by the main
cursor. Fig. 9 shows the frequency response 11.mctionin the upper graph, and the loss factor
found by the modified non-resonant method in the lower graph. In the upper cursor setup, the
UDAI LF_AT_RES has been activated and is reading out 0.089, and at the same frequency the
main cursor is reading out 0.095 in the lower graph.
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Fig. 7. Both complex modulus and loss factor are erroneous close to the resonance frequency
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Fig.8, Magnitude of complex modulus and loss factor found using equation (4) and (5)

5. CONCLUSION

In this paper it has been demonstrated that a better estimate of the complex modulus of elasticity
can be calculated based on a simple non-resonant measurement. The advantages of this modified
non-resonant method as opposed to the widely used resonant method, are twofold. First, it
delivers not only damping, but also stiffness, and second, the information is available at all
frequencies, and not only at the resonant frequencies.

It can be seen (see Ref. [6]) that the modified non-resonant method has some problems at higher
frequencies. One reason for this is due to the fact that the model used is not 100% exact. Any
small misalignment between the higher resonance frequencies in the model and the real ones
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Fig. 9. Loss factor calculated by resonance bandwidth method (uppe cursor setup), and
loss factor calculated by mod@ed non-resonant method (lower graph)

will influence the estimated complex modulus. It was also seen (see Ref. [6]) that that the loss
factor estimate got more and more noisy at higher frequencies. This is again understandable if
we remember that the inertial forces dominate at higher frequencies, i.e. stifi%essand damping
have very little effect on the FRF. But all in all, the modified non-resonant method is a clear
improvement over other methods.
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