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ABSTRACT
A method to estimate the response and the dynamic characteristics of an aerospace structure
excited by the acoustical loads produced during a rocket launch is presented. These elevated
pressure loads can be critical in the design of large lightweight structures such as solar arrays
and communication reflectors where high acceleration levels can be achieved. The resulting
acoustic field can be considered as a difise field composed of a large number of uncorrelated
incident plane-waves traveling in different directions that impinge over the structure surface. A
Boundary Element Method has been used to compute the. pressure jump produced by an
incoming plane-wave on an unbaffled rectangular plate and the fluid-structure coupling loads
generated by the plate own vibrations. This method is based on Kirchhoffs integral
formulation of the Helmholtz equation for the pressure field taking into account the
Somrnetield radiation condition. The generalized forces matrix due to the fluid loading is then
determined taking the modes of the plate in vacuum as base functions of the structural
displacement in the present problem. These modes are obtained by means of a Finite Element
Model, “An iteration procedure has been developed to calculate the natural frequencies of the
coupled fluid-plate system. Comparisons of the present method with various experimental data
and other theories show the efficiency and accuracy of this method for any support condition
of the plate and the validity of the present procedure for the values of the frequency of
excitation that appear in an acoustical test performed in a large reverberant chamber.

1. INTRODUCTION
Spacecraft structures located in the payload compartment are submitted to an intense acoustic
field during the launcher lift-off. These high pressure levels excite primarily secondary
structures of a satellite such as communication reflectors, solar arrays or thin payload panels.
With the advent of new technologies and the appearance of structures made of sandwich
composite materials, their mass has decreased considerably thus producing an increase in the
acceleration levels due to the acoustic loads that can damage sensitive parts of the structure
and the electronic equipment attached to it. For this reason, light aerospace structures are
subjected to intense acoustic test in large reverberant chambers and reliable analysis methods



are needed during its design to guarantee that the structure comply with all the acoustic
requirements of the launcher, hence the qualification test campaign can be successfully
afforded.
Two effects need to be considered in order to obtain the structure dynamic response under
acoustic loads. First, the effect of the structure surrounding fluid that transmit to the exterior
domain the pressure waves generated by the plate vibration. Second, acoustic waves produced
by other sources, impinge over the structure surface, forcing it to vibrate. These two effects
are coupled producing a continuos feedback between the structural and acoustic behavior.
The influence of the surrounding fluid on the dynamic characteristics of structures has been
well known for many years. Fluid presence affects considerably its natural Ii-equencies and
normal modes, even in the case of light fluid, like air, when the structures are constructed with
composite sandwich panels. References [8], [16], [18] and [20] provide good examples of it.
Most of these works were concerned with underwater applications, and therefore the
surrounding fluid was considered a liquid with low compressibility effects. Besides, these
structures, mainly rectangular and circular plates, were modeled as “baffled”, embedded in an
infinitely rigid plane. Acoustic radiation of baffled rectangular plates has been studied in great
detail in references [3], [7], [14], [18], [24], obtaining the acoustic pressure distribution
employing either the Rayleigh integral equation [25] or using the Fourier transform of its
impulse response. Only recent research [1], [11 ], [22] has been focused on unbaffled plates.
There are mainly two methods capable to determine the acoustic behavior of complex
geometries, Boundary Element Methods (BEM) and Finite Element Methods (FEM). The last
one is a powerfbl tool to model general structures of arbitrary shapes and is extensively
employed in structural analysis. However, the application of this method to acoustical
problems necessitates the discretization of the surrounding acoustic media. This leads at high
frequencies or unbounded fluid domains to algebraic systems of large size which increases the
computational cost and in addition, the Sommefield radiation condition is very difficult to
impose at the external mesh boundary. To overcome the previous limitations, infinite acoustic
wave envelope elements [6] have been recently developed for simple cases, but they are not
filly implemented yet. B. E. M. is an alternative method to study problems on fluid-structure
interaction in which the fluid is unbounded. This method is filly described in references [2],
[5], [9], [10] where a variational approach is adopted to solve the integral formulation of the
Helmholtz equation for the pressure field, combined with a normal modes analysis of the
structural response. Other methods as [28] are based on the time domain instead of the
frequency domain, but it seems that frequency domain methods are more efficient for the low
to medium frequencies range in which we are more interested. These two methods are only
valid for fi-equencies from Oto about 400Hz. At higher frequencies modal densities are so high
that is very difficult to identifi and calculate normal modes with accuracy, with the subsequent
increase in computational time if modal analysis techniques are performed. Therefore, at high
frequencies statistical methods have been used like SEA [15], [23]. This method consists in a
statistical analysis of the energy or power flow between subsystems submitted to random
loading.
Different studies [26], [30] have shown that the acoustic lift-off noise of a launcher can be
characterized as a difise field. To take this loading into account on the structure response,
realistic modellisation of the acoustic field has to be accomplished. Several authors [17], [27],
[29] describe statistically the sound distribution of reverberant sound fields. Nelisse et al [21]
presents an analytical method to calculate the structural response of a unbaffled panel placed in
a rectangular cavity coupling the deformation modes of the structure with the influence of the



chamber walls, considered these as rigid. References [1], [4], [12], [22] assume that the difise
field is composed of a superposition of uncorrelated incident plane waves traveling in different
directions. Each direction is characterized by a pressure spectral density.
In this paper, the response of an unbaffled rectangular plate with arbitrary boundary conditions
immersed in a difise field is calculated, modeling the acoustic field as a large number of
uncorrelated plane waves. A Boundary Element Method has been used to compute the
pressure jump produced by an incoming plane-wave over the plate surface and the loads
generated by the plate own vibrations. This method is based on Kirchhoffs integral
formulation of the Helmholtz equation for the pressure field that uses an elemental solution
that satisfies the Sommerfeld radiation condition. The integral equation is solved by means of
a collocation technique and the finite part of the singular integral is obtained analytically. The
generalized forces due to the fluid loading are determined using the vacuum modes of the
plate, obtained with a F.E.M model, as base functions of the structural displacement. An
iteration procedure has been developed to calculate the natural frequencies of the plate
surrounded by a compressible fluid. The response of the plate forced by an unitary pressure
wave traveling in a specific direction is then computed and the contributions due to all the
different directions are combined to obtain the global spectral density for a particular degree of
freedom of the structure.

2. PROBLEM FORMULATION
A thin, flat rectangular plate with any type of support condition placed at the z = O plane is
considered. The plate is surrounded by an infinite fluid domain and an acoustic plane wave

traveling at a direction defined by the angles e and $ (see fig. 1.) impinges over its surface.
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Figure 1: Geometrical representation of an unbaffled plate submitted to a plane-wave.

The differential equation of motion for the transverse displacement w(x,y,t) of the plate when
the thickness is constant can be written as:

DV4W+OM
82W
— = AP~i~(X, y, t) + AP~~~(X, y, t)
at2

(1)

Where ~vib is the pressure jump due to the plate vibration and APW.V.is the pressure jump due
to the incident plane wave over its surface when the plate is considered as rigid. Assuming
small perturbations in a compressible, inviscid and irrotational fluid, these pressure
distributions can be calculated by solving the wave equation on the fluid domain, given by:



1 6’2p
v~p. z==o (2)

Application of the momentum equation at the surface of the plate yields the boundary
condition:

L“p 8*W
—=-Pmp
(5’Z

at z=–M (3)

At a large distance from the plate, the Sornmerfeld radiation condition has to be satisfied. For
the determination of the dynamic characteristics of the coupled fluid-structure system it will be
assumed that the motion is harmonic for both the fluid and the structure. The deformation of
the latter will be expressed as iimction of the normal modes of the plate in vacuum, which have
been determined by the finite element model provided by MSC/NASTRAN. Let these modes
be Win”.,as they are only known at the nodes of the FEM model, a curve fit in terms of
Lagrange polynomials is used to obtain an analytical expression for them. The deformation of
the plate is then expressed as:

MN

(4)
m=l n=l

In what follows the independent variables x,y,z and ~,q are nondimensionalized by the

structure characteristic length 1 defined as 1 = ~.

2.1 CALCULATION OF THE PRESSURE JUMP Apvib

For purely harmonic motion and applying Green’s theorem, equation (2) can be expressed [10]
as a distribution of dipoles placed on the plate sutiace:

[)P(x,y,z)= ---#pP(g,$--g: d~dq
SP

(5)

where AP(~, @ represents the pressure difference between the lower and the upper surface of
-LkR

the plate, > is the fimdamental solution of equation (2) for harmonic motions which

satisfies Sommerfleld radiation condition.
By applying the boundary conditions on the plate surface, the following integral equation is
obtained for the determination of the pressure jump across the plate

(6)

In this equation for each mode Wmna pressure distribution (AP,,JMn will be obtained.

2.2 CALCULATION OF THE PRESSURE JUMP APw,v,
For harmonic motions, the pressure imposed by a plane wave at any point of space can be

written [22] as:

~(x, y,z) = Poe–ik(sin~cos O+sin~sin O+zcos~)

The pressure field ( in this case the sum of the incident plane wave field and the
field) must comply with equations (2) and the sommetield radiation condition
following boundaring condition at the plate surface, this considered as periiectly rigid.

(7)

diffracted
with the



ap
—=0 at z=fO in SP
(?Z

(8)

By applying Green’s theorem, the equation for the pressure field can be

[’)
P(x, y, z) = ~(x, y, z) + JJ@wave(g, q) .:$ &dq

s,

written as:

(9)

By imposing the boundary condition (8) the following integral equation to calculate APW.Veis
obtained

2.3 BOUNDARY ELEMENT METHOD
Integral equations (6) and (1O) are solved utilizing the BEM described in [11]. The plate is
divided into rectangular elements and on each element the unknown pressure distribution is
assumed constant. By satis&ing the integral equation at I*J control points placed at the center
of each rectangular element, a linear system of I*J equations is obtained for the determination

of the pressure jump distribution (either APv,~.or APWav.).The coefficients for the linear system
of equations are the double integrals over each element ij, of the fundamental solution of the
wave equation. Thus, the integration to be performed will be:

(11)

In this integral special care must be taken of the singularity that occurs when the element of
integration coincides with the element where the boundary condition is satisfied. Afler applying
the second derivative with respect to z, the following kernel finction K(x~ – ~, y. – q) is

obtained:

[)

82 e-ikR –ik R12.0 ee -lkRl=.O
K(LS – E7 Y,. –n)”= y = –ik

R2 - R3.Z=O Z=() Z=o

(12)

‘here (%S>Yr.$) are the coordinates of the control point.

At this stage, two cases can be distinguished. The first, is when the point of control is located
outside the panel over which the integration is being undertaken, and no singularity is present.
Integration of the kernel given at (12) is then numerically evaluated by means of a double
Gaussian integration procedure. The second is when the point of control is located within the
limits of the panel over which the integration is being undertaken, in this case the integral is
singular and the singular part of the kernel K (x ~ – C,Y. - @ must be extracted when
g +x. and II+ y.. The integration method to avoid this singularity consists in adding and

subtracting the singular part K, from the kernel K. The first integral which is non-singular is
evaluated numerically with a gaussian method as was done for the nonsingular case, and the
second is obtained analytically.

SP

O;ce the integration on ;ach element is performed, a linear system of equations is determined
to compute the pressure jump desired. Eqs. (6) and (1O) can be written then as:

(14)



-+[aic]{fWwave}={41 (15)

where [sic] is a square matrix of (k/)x@@ dWTMItS, {M.rb] , flmn) , {flwave } and {P,} are

vectors of W elements. Solving both linear system of equations the pressure distribution of the
plate can be obtained.
The generalized force for the ZW’hmode is defined as the work done by the total pressure
distribution considering all the modes of vibration on the Uvthmode, and can be expressed as—

!2Z4V = ~~ N ‘.. ‘o = ~~~vib~~~~~+f~~wave~uvdo (16)

s, s, S*

The equations of motion for the generalized coordinates associated with the modes of vibration
of the plate, with the forces exerted by the plane wave, can then be expressed as

(-CD2[MI+[~I){q}={Q}=[Q:j]{~}+{Qwoe}=cD2[MIf{~}+{Qwme}
and rearranging equation (16) it can be expressed as

(-02([~]+[~]J)+[~]){q}={Qwave}

(17)

(18)

The solution of this linear system leads to the response of the plate to an incident plane wave.
If no external forces are considered except those produced by the surrounding fluid due to the
free vibration of’ the plate the resultant homogeneous system will provide the natural
frequencies and the normal modes of the coupled fluid-structure system.

2.4 CALCULATION OF THE DYNAMIC RESPONSE OF A STRUCTURE
INMERSED IN A DIFFUSE FIELD.

A difise field can be modeled by the superposition of plane waves traveling through different

directions[4]. Let’s assume that the elemental power spectral density of the incident wave in

the “ij” direction, defined by the angles e and $ of fig. 1., is WPU(W)in Pa*/Hz. If the different
directions of the incident waves aren’t correlated the total power spectral density WP would be
the addition of all the elemental densities. As a launcher acoustic requirements are given in
NdB per octave [30] for a specific bandwidth, the total power spectral density WP is assumed
constant over such bandwidth, obtaining the following expression:

2 WpAf
N=10.log$=lOJog~

r r

(19)

Where P,= 2*10-5 Pa is the reference pressure. From this equation it can be obtained that the
power spectral density can be written as:

P: N
–(10)( )iii

‘=Af
(20)

The space field is divided into a finite number of directions ei, $ and associated to each
direction there is a solid angle ~j. It is assumed that the power spectral density of the ij

direction is aij*WP(~), where WP is the total power spectral density.
Once all the problem parameters are defined, the calculation of the structural response to the
difise field is obtained as follows:
let’s H~ij (w) be the transfer function between the r degree of freedom of the structure and the
plane wave of ij direction. The power spectral density induced by all the plane waves
occupying the solid angle corresponding to the ij direction for the rti degree of freedom is:

Wr,lj = Hr,ij(~) 2WpiJ = H,,ti(~) 2 aljWP (21)



As all directions are uncorrelated, it can be demonstrated for a random field [31] that the
structural response is obtained as the sum of the elemental spectral densities.

wr(~)=WP(CII)~Hr,ij(~)2aij
(22)

i)j

Thus, a relation between the power spectral density of the r structure degree of freedom, the
acoustic power spectral density WP and the transference function between the r degree of
fi-eedom and the plane waves composing the difise field is derived.

2.5 PROCEDURE FOR THE COMPUTATION OF THE NATURAL
FREQUENCIES
The natural frequencies of the system are determined by making the determinant formed with
the two mass matrices and the stiffness matrix equal to zero. However, the added-mass matrix
[M]~ depends on the frequency of oscillation of the plate and, therefore, an iteration procedure
needs to be used in order to obtain the natural frequencies of the coupled fluid-structure
system.
The iteration scheme developed is as follows ( for more details see[11] ):
First, the natural frequencies of the system are computed assuming that the surrounding fluid is
incompressible.

(D .1
A set of reduced frequencies are then determined, defined as k, = ‘mom’ where q is the

am

jr~ natural frequency of the coupled system incompressible fluid-structure.
By taking these results as an initial guess and letting now the added-mass matrix to be a
finction of k, the natural frequencies of the system are recalculated until convergence has been
achieved
For each natural frequency the procedure converges in two or three iterations. It should be
noted that for a compressible fluid the natural frequencies are obtained one by one while for an
incompressible fluid all of them are obtained at the same time.
Once the natural frequencies of the coupled fluid-structure system are determined, the normal
modes can be computed and expressed as a linear combination of the normal modes of the
structure in vacuum.

3. RESULTS

Next some results from the method developed will be presented.
To validate the B.E.M numerical code, the case of the diffraction of a plane-wave impinging
over a rigid plate with dimensions of O.8m x 0.6m has been selected, and the results obtained
have been compared with the method developed by Nelisse et al [22] .The orientation of the

incident plane-wave is 0=0° and $ =0° (perpendicular to the plate) and its amplitude is the
unity, Figure 2 shows the absolute value of the sound pressure jump at the point (0.27,0.3) on
the panel as a fi.mction of the frequency, between OHZ and 500Hz. Results show an excellent
agreement between both predictions. As the influence coefficients matrix is common for both
the rigid and the vibrating pressure jump calculation, these result also validates the code
developed to calculate the natural frequencies.
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Figure 2: Pressure jump across a rigid plate for a particular point.

In the next case, the effect of the surrounding fluid density on the first four frequencies of a
rectangular sandwich plate is presented. The plate is divided into 20 x 13 elements, to
represent correctly the plate modes over the frequency range. This type of structure is
employed in the aerospace industry because it is very light and very stiff and this is the case
where the fluid effects rise considerably. Two different boundary conditions are selected, a
simply supported and a free-free plate. The plate’s dimensions are 0.6m x O.386m and is made
of a honeycomb core of thickness 15mm and two skins of CFRP(Carbon Fibre Reinforced
Plastic) of 0.39mm thickness each one. The density of the plate is 129 Kglm3 and the Young’s
module E has an average value of 9x 10%Um2. The natural frequencies of the plate in a
vacuum, submerged in air considered as an incompressible fluid (k=O) and a compressible fluid
are presented in Table 1.

Simply Supported Plate Free-Free Plate

Mode Vacuum Incompres. Compres. Vacuum Incompres. Compres.

Table 1: Natural frequencies of a simply supported and free-fi-ee plate surrounded by air.

The natural frequencies of the plate decrease from its vacuum value due to the effect of the air.
This effect is larger in the free-free plate than in the simply supported plate. In the latter case,
as we consider higher modes their natural frequencies are closer to the vacuum value. The
explanation can be found if we plot the diagonal terms of the added-mass matrix as a fbnction
of the reduced frequencies (Fig. 3 and Fig.4). These curves show the real part and the



imaginary part of those terms. The real part causes the reduction of the frequencies and the
imaginary part represents the fluid damping. The added-mass increases its value from the
incompressible (k=O) case untill it reaches a maximum and then it decreases towards zero. If
the reduced fi-equency of the mode considered in a vacuum is located before the maximum,
the natural frequencies are reduced due to the fluid presence but if the maximum is placed after
it the frequencies tends to reach the vacuum value.
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Figure 3: Added-mass terms as a fi-mction of the reduced frequency for the free-free plate
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Figure 4: Added-mass terms as a finction of the reduced frequency for the simply supported
plate

Figures 5 and 6 show the fluid damping ratio of the first four modes. It is defined as
–m. ~;= ; where m, is the imaginary part of the diagonal terms of the added mass matrix for

Cr



each mode and Cc, is the critical damping of the corresponding mode. The fluid damping ratio
has a maximum value of 0.096 for the simply supported plate and 0.137 for the free-free plate.
Considering that sandwich panels have a structural damping ratio between 0.01 and 0.02 the
acoustical damping cannot be neglected at very high frequencies. Those plots are also very
usefil to determine the contribution of fluid damping in the total damping measured in a test,
been able to separate then the structural and acoustical damping terms.

Free-Free Plate

Figure 5
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4. CONCLUSIONS

A method to calculate the dynamic characteristics of a rectangular plate of any type of support
condition immersed in a difise field has been presented valid for low to medium fi-equencies.
The numerical integration procedure of the kernel fi.mction has been validated with existing
data and presents an excellent efficiency and accuracy. The iterative calculation of the natural
fi-equencies shows that depending on its vacuum value and boundary condition, the natural
fi-equencies are considerably reduced by the surrounding fluid or are similar to the vacuum
ones in a sandwich plate. The added-mass and fluid damping modal coefhcients as a iimction
of the reduced fi-equency has been described in physical terms and its influence cannot be
neglected in dynamic calculations of large frequency range. The calculation of the response of
the plate to a difise field load with the formulation described in this paper and the extension to
more general structures is currently underway.
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