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Abstract

An analytical model of shell is used to study its sound radiation under the influence of

internal structure of high modal density. The numerical results show a smoothing of cylinder’s

velocity and radiation spectra that can be associated to an increased damping. The paper pre-

sent the theoretical derivation of the method, in the case of a cylinder coupled to internal system

described by point nobilities.

1. INTRODUCTION
A machinery is often composed of a hood

substructures (1.S.). Ignoring this substructures

hood can lead to bad results, when compared to

substructure in a determinist sense, is generally

bight modal density.

radiating sound to the exterior and internal

when calculating the sound radiated by the

experiment. However taking into account the

unrealistic due to their complexity and their

The goal of the paper is to describe the effect of 1.S. in specified way based on their input

nobilities, and present the basic effects on the sound radiation. In particular conditions, that

will be described, the internal substructures can increase considerably the apparent damping of

the hood, and then reduce the radiated sound.

2. RADIATION OF CYLINDER
Let us consider a finite cylindrical shell, terminated by infinite cylindrical rigid baffles and

immersed in a fluid. The shell is excited by harmonic point force of pulsation w.

The shell equation of motion is:
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where

— m is the shell mass per unit area



— u(Q), v(Q) and w(Q) are the longitudinal, tangential and radial displacement at point Q

of the shell mid-surface.

– $?Wis the radial component of driving force.

— P(Q) is the shell boundary pressure.

– L is the Donnell’s operator.

The displacement for a shell with simply supported boundaries is sought by introducing

the following expression
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where

– A&i is the modal amplitude of a shell mode of circonferentiel order n, longitudinal order.
m, type j and symmetry character a.

- 1 is the shell length.

- (Dn.j, l%j, 1) are components of the eigenvector.

In the fluid, the acoustic pressure is governed by the Helmholtz’s equation:

v2?(fl”q+ ($)P(W=o

where w is the angular frequency and c the speed of sound. At the

shell and the fluid medium of density po, the continuity of normal

{

* = pOU2W(Q)
Z& J-o

on the shell

i% — on the cylindrical

(3)

interface between the baffled

velocities requires

baffle
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The pressure field solution can be expressed with the integral Eq.(5) (see LAULAGNET).

P(Q)= ‘PoLJ2 J&ii5:~A:mjG(Q, Qo)sin(nq5+ ;)Si~(Y)dS (5)

where G(Q, Qo) is the Green’s function satisfying the Neumann boundary condition on the

cylinder and the baffle.

The introduction of Eqs (2) and (5). into Eq. (1) yields after use of shell modes orthogo-

nality properties:

where

— MP~k is the generalized mass of the shell mode.

— WP@ is the eigen angular frequency of the cylinder.

— ~. is the shell loss factor.



- ZP~, is the acoustical radiation impedance of the cylinder modes, involving circonferentiel

order p and longitudinal orders (q,m).

– fi~~k is the generalized force due to the mechanical driving force.

The determination of the modal amplitudes allows us to calculate the quadratic velocity

< V2 > and the radiated power W of the shell with Eqs. (7) and (8).
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where R indicate the real part.

3. INTERNAL SUBSTRUCTURES
The Internal Substructures (1.S.) will be described in a simplifed way, using model of input

mobility. To every 1.S. is associated an input mobility of a beam like structure in longitudinal

motion (Eq. (9)).

A’&erna[= —i
S@tan(kL)

(9)

where S, E, p, L represent respectively the section, the Young’s modulus, the density and the

length of the beam. k, being the mechanical wave number, is expressed by:

We present in Fig. 1 the input mobility of 1.S. in the case of High Modal Density (1.S. H. M.D.)

(0.4 mode/Hz) and a damping loss factor q = 10-2, and the shell input mobility. In this case, the

two nobilities have approximately equal geometric mean, that significate impedance matching.

I mobility of one I.S.H.M.D. —
mobility of the shell ----

# , /
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FIG. 1- mobility modulus of the shell and of one I.S.H.M.D.

In a machinery, the 1.S. are generaly not directely coupled to the shell, but are attached

through a spring. The input mobility of the internal system is then given by Eq. (10):



Manterna[= – iw
ESk tan(kl) + K

ESk tan(kl) x K
(lo)

where K is the stiffness of the coupling spring.

We present in Fig. 2 the mobility modulus of one internal structure coupled with a spring

between 104kg.s-2 to ‘108 kg.s-2. When the spring stiffness decreases, the ‘mobility

increases. So one can say that the shell motion will be free at the coupling points.
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FIG. 2- Influence of the value of the spring on the mobility modulus of one I.S.H.M.D.

4. COUPLING BY MOBILITY
The coupling of the shell and the internal structures is carried out using the mobility

method, which consists of calculating the coupling forces, solving the linear system (11):

[fisheu (l, J) + fiinternal (~, J)l{m} = {Tzntet’fad(q- 7AM} (11)

where

- F’(1) is the coupling force at point I.

– Vint.,n.[ (1) is the uncoupled internal structure velocity at the coupling point I due to the

excitation’s force in the internal structure.

– V.h,ll (1) is the uncoupled shell velocity at the coupling point I due to the excitation force

applied to the shell.

— Mint.,n.l (1, J) is the transfer internal structure’s mobility between points I and J.

— M,h.ll (1, J) is the transfer shell’s mobility between points I and J. The expression of the

mobility’s matrix of the shell is the ratio between the radial velocity Vz,@, and the driving

force, at each coupling’s point:

%4,M.he// (1, J) = —
F@,

(12)

and is calculated solving the linear system (6), one per losation of a 1.S.H.M.D..



The determination of F’(1) allows us to take into account the effects of the 1.S. on the shell

calculating the response to a driving force equal to directly applied force and coupling forces.

4.1 Position oft he driving force
The driving force can be located either on the shell or in the internal system. In the

mobility method, the driving force is taken into account by the determination of the uncoupled

velocity of every structure before coupling. This velocities correspond to the velocities of each

structure at the coupling’s points, for a position of the driving force given. If the driving force

is on the shell, the uncoupled internal structure velocity is zero, and vice versa.

In this paper only the case of excitation located in the internal substructures will be

considered and we will firstly study the effect of distance of the driving force position to the

coupling point. The driving force appear in the right-hand side of the equation (11), through the

uncoupled velocity of every structure before coupling :~iS et ~ic. Taking again our assumption of

I.S. H. M.D., of beam like structures vibrating longitudinally, one can obtain the expression (13)

KS(O)= ;& Cos(kq))
‘ZC” x [sin(kzo) +

tan(kL) 1 (13)

where the driving force of modulus F‘Zc. is located at point zo and the coupling point is zero.
In Fig. 3, we show the uncoupled internal structure velocity modulus for three different

positions of the driving force at the coupling point, in the midlle and at the opposite end of the

beam.
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FIG. 3- influence oj the position of the driving force on the uncoupled velocity modulus of one
I.S.H.M.D.

Let us remark that the velocity is the same when the I.S. H.M.D. is terminated by a spring,

and thus in this case only the mobility will be changed.

5. NUMERICAL SIMULATION
5.1 Direct coupling

In this case the I.S. H.M.D. is directly connected to the shell, or through a spring having a

minimal value of 108kg.s ‘2. Let us take the example of a baffled cylindrical shell, coupled with

eight I.S. H.M.D. distributed in different points of the shell. The internal structures are defined

by the mobility given in Fig.1.



In Figs. 4 is presented the calculation of the quadratic velocity of the only cylindrical shell

and of the shell coupled with I.S.H .M.D. for the three positions oft he driving force given in Fig.

3.
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FIG. 4- Influence oj the position of the driving force on the quadratic velocity

One can see a smoothing of results, in every cases, between the empty shell and these

coupled one. This effect is associated to the dissipation in the internal structures. Even if the

loss factor of 1.S. is weak, because of the great number of modes, the total power dissipated is

big.

In addition, the influence of the position of the driving force in the I.S. H.M.D. is only

rendered by a decrease of the level of the quadratic velocity versus the frequency, without

changing its behavior. This decrease is as much higher than the driving force is far from the

shell.

We show too, in Fig. 5, the acoustical behavior by presenting the power radiated, for the

same cases as precedently.
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Influence of the position of the driving force on the radiated power



We can do the same observations as precedently about the effect of the I.S. H. M.D., that is

a smoothing and a decrease with the distance of the driving force, excepted from 400 Hz where

a dynamical appear. So the shell coupled radiate more than this empty one.

5.1 Non-direct coupling

In this case, the I.S. H.M.D. are not directely coupled to the shell, but are attached through

a spring of stiffness 104kg.s ‘2. The input mobility of the I.S. H.M.D. is higher than this one of the

shell, hence we don’t respect the condition of matching impedances of the preceding paragraph,

that is to say, point mobility of shell and I.S. H.M.D. having close geometrical average.

Fig. 6 shows the quadratic velocity of the only cylindrical shell and of the shell coupled

with I.S. H.M.D. for the three positions of the driving force given in Fig. 3.
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FIG. 6- Influence of the position of the driving force on the quadratic velocity

As the condition of matching impedance is not respected, the effect is not an increased

damping, but a little increase of the modal density. The driving force being in one internal

structure, the presence of the spring leads to a big decrease in the quadratic velocity.

The same remarks can be done on the acoustical radiated power showing in Fig. 7.

In a machinery, when the I.S. H.M.D. are not directely coupled to the shell, but are attached

through a spring, the phenomenon of smoothing can ‘t appear by this way that is, a dissipation

due to a transfert of the energie from the shell to the I.S. H. M.D., because of non respect of the

matching impedance.
To put a spring between the shell and the I.S. H.M.D. is only interesting if the driving

forces are in the I.S. H. M.D., what is generally the case in a machinery hood.

6. CONCLUSION
The smoothing of vibration and radiation behavior of structures containing 1.S. has been

evidenced theoretically and experimentally. It is necessary to have both matching impedance

and high modal density, of 1.S. compared to the structure.

These two conditions are not often encountered in structures and the phenomenon will

be in general not observed.

When the internal structures are decoupled from the shell through a spring, then we lost
the phenomenon of smoothing because the condition of matching impedance is not respected,

moreover the level is very much lower.
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FIG. 7- Injluence of the position of the driving force on the radiated power

The position of the driving force influence only the level at high frequency but not the

dynamical behavior.
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