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ABSTRACT

For a quality controlled application of the percentile sound evaluation index LX , its ac-
curacy, limited by the stochastic level fluctuations, should be quantified. This is achievable
by determining first the variance of the partition of the signal amplitude with respect to a
fixed level, the expectation value of LX . Then the percentile’s spread itself is accessible
through the cumulative level distribution.
As is still to be done, this paper presents a comprehensible proof of the partition variance
formula, which is of fundamental importance for the evaluation of the LX - confidence
limits. Given a number of crossings within a given measurement time interval the proba-
bility that a definite total of the single continuous overshoots, i. e. “crossing up” time in-
tervals occurs, depends as on the stochastic system’s crossings up as on its crossings down,
and further on the probability density function (p. d. f.) of the crossing number. Above an
easily practicable minimum crossing number the p. d. f. of the total crossing time, and so
of the partition itself, can be presented explicitly and straightforward in microstatistic
terms applying the Central Limit Theorem of Statistics. Then step by step integration of
the variance definition equation leads to the already known and applied final result.

1. INTRODUCTION

In practice of environmentalnoise control noise levels are encountered which, as a rule,
fluctuaterandomly - often over several decades of decibels even duringrelatively short time
intervals.It is evident that for the exhaustivedescription of those fluctuationsxO/&quantiles,i.
e. the percentilelevels ~ , arethe appropriatekind of measurementindex. For this reason al-
ready since manyyears the sound percentilesarepart of the standardmeasurementtechnique.



Due to the stochastic being at work the measured ~ value is of restrictedaccuracy, like any
other kind of measurementindex. Its nonzero spread can be visualized by a manylold repeti-
tion of the measurementundernonvaryingmeasurementconditions.
In a former paper of the author is demonstratedhow the latent spread of a single measured
& value can be described by the underlyingstatisticalstructuralparametersof the signaland
of the length of the measurementtime interval[2]. The access to the percentile spread is pos-
sibleby taking advantageof the varianceof the partitionimposed by the ~ expectation value
on the stochastic sound signal’sinstantaneousvalues. The transitionto the finally interesting
bracket confidence interval calculated according to a given confidence level [1] is accom-
plishedby use of the cumulativedistributionof the sound level [2][3].
The purpose of this present paper is to derive in comprehensive detail
formulawhich for the fist time was used in the shortbasic paper [2].

2. THE STOCHASTIC SYSTEM

the partitionvariance

Let us use for simplicityinstead of x YO the parameter q e R+ , 0< q <1. It denotes the
fraction of time duringwhich a given value of a magnitudelike the sound pressure level here
denoted by Lq, is exceeded by the instantaneousamplitudes.The mutual assignmentof the
variables q and Lq is establishedby the definitionequation

q(L~) = +$W,
1–1

The tier notations used in
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this expression and illustratedby Fig. 1 are: T: Measurement
time interval; n: In T observed numberof the time intervals wi, the “crossing up” intervals
created by the immediatelysuccessive crossing up and crossing down of the time dependent
soundpressurelevel relativeto Lq. Lq is here presupposed as an expectation value. W de-
notes the sum of the crossing up intervals.Its number should be n >% 7. The reason for this
will be given below. Since wi , n and consequently W are stochasticvariableseach of them
evidently obeys an own probability density fhnction (p.d.f) [1]. The most simple physical
model which can create the quantitiesof kind wi at a fixed level is a sequence of single
transientsound events filly separatedin time like the singlepassing by of vehicles which oc-
curs in case of traffic with very low intensity.
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Fig. 1: Definition of the parametersand stochasticvariablesused in eq. (l).
For the derivationof the partitionvarianceformulathe time dependentlevel
value Lq is to be considered for the moment as a representativefixed value,
i. e. as its expectation. (Schematicpresentation.)



3. STATE DENSITY EQUATIONS

3.1 Distributionof the total crossrnztime

If the variance of W, the total of crossing up intervalsis accessible, then according to eq. (1)
also the variance of the partition q is known. Then using Var q the variance of the in-
terestingquantile(percentile) level Lq is accessible by an unambiguousprocedure from the
cumulativedistributionfimction of the time dependent sound pressure level signal.This is al-
ready demonstratedin fidl detailm [3].
The varianceof W dependenton the system’sparametersis by its basic definition[1]

Var W = (W-FT)2 = w2–ir2 . (2)

As usual the bar in eq. (2) indicatesthe expectationvalue. It is per definitionthe mean taken
over the distributionof allpossible outcomes of the variable W ([1], Ch. 1.1). Var W is de-
terminedover the sample space S = {W :0 S W S T}.
For iirther evaluation let us consider first the case of a given value for an integer n 22.
l%en the p.d.f ~(W,n) , where n has the fiction of a set parameter, is completely deter-
minedby then-l-fold convolution ([4], Ch. 12.2)

w W–w’n-l W–wZ–...–wn-l

p(w,n) = J J .. . J g(w–w~– ...–wn_l)g(wl)...

wn_l =0wn_2=0 Wl=o

(3)

. ..g(wn_2)g(wn_l )&l”” ”&n_2&n_l

where g(w) denotes the p.d.f (normalized to unity) of the single crossing up intervals wi
preassumedto be stochasticallyindependent..
Distributions of wi and ~ extracted from everyday field measurementsof environmental
noise show that these probability densities can approximated quite well by a iimction of the
type

gn(w) = Xn-l e-x /r(~) ? (4)

where typically 1/2 <Z n <~ 3/2. Due to the inherentsystemproperty

W+U = T = comt. (5)

W andthe total U of the crossing down intervals~ (see Fig. 1) are strongly connected by
the measurementtime interval. They have to share the same available time reservoir T
among themselves. Also the variable fi-om the type u is assumedto be stochasticallyinde-
pendent. The most simple physical models that can create the quantities ui are the time
distancesbetween the separatepassing by events of aircrafls or of vehicles if there is traffic
withvery low intensity.
As the ui and wi always occur in an immediate alternation,they generate “stochastic
periods”, for example in Fig. 1 from the beginning of ui to the end of wi . Hmce to the



variableof type u the samenumber n can be attributedas to the variable of type w . Ac-
cording to these system properties, primarilythe kind of conditional probability which is
actinghere, the finalp.d.f for W now can be expressed. For this purpose we also need the
p.d.f of the crossing down total U denoted hereby ~(U,n) . This p.d.f. can be calculated
completely analogous to eq. (3) by replacementof w and g(w) by u and its p.d.f As the
basic p.d.f g(w) is in general a continuous fimction by eq. (3) also the p.d.f (p(W,n) is
continuous in W . Thus if (p(W,n) is also clearly dependent on n it can be expressed as a
continuous fimction of n . This corresponds with realitywhere usually a noninteger number
of stochasticperiods is cut out by the measurementinterval T . Hence the iinal state density
of W, i. e. its p.d.f denoted by @(W,n,T), can be expressed as

d2P(W,n,T) := P{ W< W’SW+dW;n Sn’<n+dnl W+U=T}

= a(n, T) “p(W, n) MT– W,n)dW “f (n, T)dn (6)

‘4 > &W,n,T)dWdn .

h eq. (6) a(n,T) denotes a factor which normalizes q(W,n)”V(T-W,n) to unity over the
parameterspace Sw = {W :0< W < T}. The p.d.f of the crossing number n c R+ is deno-
ted by f@, T).

3.2 Exdicite rtwresentationby expectationvaluesusing the CentralLimit Theorem

In favor of a comfortable presentationand evaluationof the eqs. (3), (6) and (2) in terms of
easy accessible observable the basic expectationvalues ii, W,

R := TI(G+w) (7)

and also the variances CJUof ui and (rW of wi areused.
In eq. (1) we have a linear sum of the crossing up vector components wi . If there is a suf-
ficient high number of crossings in T , the sum in eq. (1) which is distributedin general as
expressed by eq. (3), becomes approximatelya normal distribution,what is the well known
content of the Central Limit Theorem (C.L. T.) ([1], ch. 5.3). The mean value parameterof
thisp.d.f is

w =E”iv (8) . The varianceparameteris #w = %2 w“ (9)

The normal distribution

[1

(X+2
NX(p, ~) = N(x;p, #) = &oexp - 2J (lo)

([1], ch. 3.4) is specified hereby the index x representingsymbolicallythe variables W or
n . As in [1] is cited generally,the approximationby the C.L.T. will be good if n is greater
than 25 or 30. It can easilybe shown by computer aid that if the distributionis of the single
sampletype eq. (4), alreadya value of n as smallas 7 yields an adequate approximation:k
this case the deviation of the confidence limits [1][2][3] from their values which result from
the exact p.d.f. is less than 10 ‘XOandthustolerable. Hence the p.d.f @W,n) , eq. (3) can be
denoted as



~W,n) = N(ni7,n<) (11)

andcorresponding ~(U,n) = ~(T-W,n) by

~T-W, n) = N(T-nii, n<) . (12)

From these two eqs., after some algebraicrearrangement,follows

q(W, n) y(T-W, n)=

[

nW<i-(T-niZ)< ~< 1 [1Nn n, cf
(13)

Vp “Nw
2+2 ‘n AcT2 “u w u w

where
Vp := ll(ii+w) (14)

is the meanfrequency of crossing up and crossing down intervalsrespectively. The number n
is stilla freely varyingparameter.
It is remarkablethat in consequence of the constrainteq. (5) the variance of W is primarily
determinedby the smallerof the two variances (s~ and (sW. For the crossing numberthe ex-
pectation ii is determinedaccording to eq. (7) and itsvarianceby

(15)

which is composed additively by two stochastically independent terms. The phenomenon
“numbervariance” has alreadybeen mentioned and shortlydiscussedin [6].

In favor of a relativelysimpleperformance to presentthe righthand of eq. (6) in terms of the
basic parameters T, n resp. ii, ii, W, Ou and Ow it is convenient - and also justified by
the measurementconditions in the dailypractice - to presuppose that the measurementtime
interval T covers Nw [...] almost completely. For control thatthis condition is met, an ade-
quate criterionfor the requiredminimumcrossing numberis to be established.With respect to
the nearer,i. e. the crucial edge of the samplespace to cut off the p.d.f this criterionis

In eq. (16) z denotes the quantileof the N(O,1) distributionwhich results from a partition
l-cx/2. According to this u indicatesthe maximumpossible deviation of an integrationover
the distributionsin eq. (13) in comparison with anunbounded integrationwhich yieldsunity.
If the corresponding parameterincluded in eq. (13) are insertedin eq. (16), in the worst case
of W for the upper edge of the sound pressurelevel distribution,i. e. if ~ << ii and un-

der the assumptionthat the variance coefficients of the stochastic variablesui and wi i. e.



vu :=ou /ii and vW := SW/ w do not exceed the order of magnitude 1 considerable, then

easilycan be shown thatthe generalcondition for the minimumnumberrequiredis simply

(17)

For an approximationof the normal distributionfor exampleto at least 99 ‘%0(i. e. a< 0,01),
~ = 2,6 is necessaw ~d n has to be 7 at least. ~fie condition(1’7)iSdSO met fOr n ,thk

parametercan in Nn [...] and a: be replaced by ii (see eqs. (13) and ( 16)). If the condi-

tion (17) holds and eq. (13) is insertedinto the definitioneq. (6) the normaking of the W-
part of $(W,n,T) to unityyields

[ o-qa(T,n)”7p” Nn B, ~ = 1 . (18)

With thisnormalizingcondition we get

~W,n,T) = Nw[. o.]“ f(n,T) (19)

For the calculation of the first and second moments of n to be performed, the p.d.f fln,T)
mustnot necessarily be known explicitly. Only the mean and the variance of n are needed.
Despite of thisthe explicite fiction f@, T), at leastif condition (17) is met, is of interest.The
cumulativeprobability F(n,T) of tie .SWLIof n periods ~+wi dependent on the @@ of
time interval T over which it is established,can be expressedby

TW

F(n, T) = j ~q(W,n) flt’-W,n) dW’ dt’ . (20)

t’=ow’=o

E (17) holds then the integration over W yields the normal distribution

[
NtI n”(ti + W), n”( #u + #w )] . From the corresponding cumulativedistributionfimction

@(T,n) the p.d.f f(n,T) can be derivedby

‘dNtl(t’-n”(Z+iT))
f(n,T) = - ~~’n) = -~ dt’ = Nn(fi, <) .

h
(21)

o

Thusthe finalform of $(W,n,T) is

[

ni7<+(T-n@< ~< N n ~
&W,n,T) = Nw

~+< 1
[1‘n+< ‘-’n” (22)

It is here to be emphasizedthat in eq. (22) Nw , in extension of the strong definition of the
normalp.d.f, sti12depends on n.



4. VARIANCE OF THE CROSSING TIME IN TOTAL AND OF THE PARTITION

All components of the p.d.f $(W,n,T) , necessary for the fhrtheroperations, now are prin-
cipallyknown, based on the distributionsof the wi and the ~ variables.Using eq. (22) the
first and second moment of W, the crossing up in total principallycan be calculatedby inte-
gration over W and n . These moments are required to determineexplicitly Var W ac-
cording to eq. (2).
The fist moment of W is to be calculated by integrationsof (22) and using eq. (7) . It is
simply

w=im=~. T=q” T.
ii+v

To evaluatethe second moment the integrationover W yields

W2(n) =

[ 1

n(W~–ii~w)+T~w 2 *2

/+7
+no .

u w

(23)

(24)

For abbreviation O* is introduced by

l/cr*2 = lkruz + l/cJw2. (25).

Integrationof (22) over n , using the known moment properties of the normal distribution,
yields

W2 = ~W2(n). Nn(E, ~) dn

o

(26)

Hence according to eqs. (25), (23) and (2) and ailer an algebraicrearrangementwe arrivefi-
nallyat

and due to eq. (1) at

(27)

(28)

The “masterequation” (28) was presentedthe fist time in [2]. Due to the relations



equivalentpresentationsare

w
—“%’vii+w

(29)
ii

—=%.4ii+w
(30) (31)

[2]. It can be statedthatthe varianceformulas eqs. (27) and (28) are exactly valid in the limit
of very high crossing numbers n. Since n does not necessarilyappear as an intrinsicsystem
parameterin eq. (28), what is evident by the first of the eqs. (32), it can be concluded that
formula (28) is also valid for arbitraryvalues of n at least as far as they meet the condition
(17). This is also supported by the fact that the concepts of mean andvariance are not bound
on a particular distribution as for example N(IJ,CJ2).For application of eqs. (32 a,b,c) in
measurement practice, instead of the expectations m, T, ii, m, au and Ow , the
corresponding estimatorsevaluatedfrom tie vectors ui ~d wi areto be insefied. ~ese are
for ii the observed crossing number n in T, for T, the ratio n/T and for ii and w the
average of the ui and wi respectively. In additionthe ~-quantitiesare to be replaced by the
corresponding standarddeviations [1]. The parameters qu and qw (qu+qw:= 1) ad T are

constantsto be chosen according to the type of measurementtask.

5. CONCLUSIONS

It can be demonstratedthat the variance of the partitionwhich is imposed by a tied level on
the intsantaneousvalues of a stochasticallyvarying signal like an environmentalsound pres-
surelevel can be derived with transparencyby aid of the CentralLimit Theorem of Statistics.
AIthough this principallyimplies an approximationit has the advantageto allow an explicite
treatmentof the appropriate directly observable parametersof the signal’smicrostatistics.It
can be concluded thatthe highly simpleand, as to be expected, completely symmetricfinalre-
sultis valid in general.
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