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ABSTRACT

For a quality controlled application of the percentile sound evaluation index L, , its ac-
curacy, limited by the stochastic level fluctuations, should be quantified. This is achievable
by determining first the variance of the partition of the signal amplitude with respect to a
fixed level, the expectation value of L, . Then the percentile's spread itself is accessible
through the cumulative level distribution.

As is still to be done, this paper presents a comprehensible proof of the partition variance
formula, which is of fundamental importance for the evaluation of the L, - confidence
limits. Given a number of crossings within a given measurement time interval the proba-
bility that a definite total of the single continuous overshoots, i. €. "crossing up" time in-
tervals occurs, depends as on the stochastic system's crossings up as on its crossings down,
and further on the probability density function (p. d. f.) of the crossing number. Above an
easily practicable minimum crossing number the p. d. f. of the total crossing time, and so
of the partition itself, can be presented explicitely and straightforward in microstatistic
terms applying the Central Limit Theorem of Statistics. Then step by step integration of
the variance definition equation leads to the already known and applied final result.

1. INTRODUCTION

In practice of environmental noise control noise levels are encountered which, as a rule,
fluctuate randomly - often over several decades of decibels even during relatively short time
intervals. It is evident that for the exhaustive description of those fluctuations x%-quantiles, i.
e. the percentile levels L, , are the appropriate kind of measurement index. For this reason al-
ready since many years the sound percentiles are part of the standard measurement technique.



Due to the stochastics being at work the measured L, value is of restricted accuracy, like any
other kind of measurement index. Its nonzero spread can be visualized by a manyfold repeti-
tion of the measurement under nonvarying measurement conditions.

In a former paper of the author is demonstrated how the latent spread of a single measured
L, value can be described by the underlying statistical structural parameters of the signal and
of the length of the measurement time interval [2]. The access to the percentile spread is pos-
sible by taking advantage of the variance of the partition imposed by the L, expectation value
on the stochastic sound signal's instantaneous values. The transition to the finally interesting
bracket confidence interval calculated according to a given confidence level [1] is accom-
plished by use of the cumulative distribution of the sound level [2][3].

The purpose of this present paper is to derive in comprehensive detail the partition variance
formula which for the first time was used in the short basic paper [2].

2. THE STOCHASTIC SYSTEM

Let us use for simplicity instead of x % the parameter ¢ € R, 0 < q < 1. It denotes the
fraction of time during which a given value of a magnitude like the sound pressure level, here
denoted by L, is exceeded by the instantaneous amplitudes. The mutual assignment of the
variables q and L, is established by the definition equation

w
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The further notations used in this expression and illustrated by Fig. 1 are: T: Measurement
time interval, n: In T observed number of the time intervals wj , the "crossing up" intervals
created by the immediately successive crossing up and crossing down of the time dependent
sound pressure level relative to Ly . Lq is here presupposed as an expectation value. W de-
notes the sum of the crossing up intervals. Its number should be n >~ 7 . The reason for this
will be given below. Since w;, n and consequently W are stochastic variables each of them
evidently obeys an own probability density function (p.d.f) [1]. The most simple physical
model which can create the quantities of kind w; at a fixed level is a sequence of single
transient sound events fully separated in time like the single passing by of vehicles which oc-
curs in case of traffic with very low intensity.
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Fig. 1: Definition of the parameters and stochastic variables used in eq. (1).

For the derivation of the partition variance formula the time dependent level
value L, is to be considered for the moment as a representative fixed value,
i. e. as its expectation. (Schematic presentation.)



3. STATE DENSITY EQUATIONS

3.1 Distribution of the total crossing time

If the variance of W , the total of crossing up intervals is accessible, then according to eq. (1)
also the variance of the partition q is known. Then using Var q the variance of the in-
teresting quantile (percentile) level L, is accessible by an unambiguous procedure from the
cumulative distribution function of the time dependent sound pressure level signal. This is al-
ready demonstrated in full detail in [3].

The variance of W dependent on the system's parameters is by its basic definition [1]

VarW = W-W)> = Ww*-w?. Q)

As usual the bar in eq. (2) indicates the expectation value. It is per definition the mean taken
over the distribution of all possible outcomes of the variable W ([1], Ch. 1.1). Var W is de-
termined over the sample space S={W:0<W<T}.

For further evaluation let us consider first the case of a given value for an integer n > 2 .
Then the p.d.f @(W,n) , where n has the function of a set parameter, is completely deter-
mined by the n-1-fold convolution ({4], Ch. 12.2)
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where g(w) denotes the p.d.f (normalized to unity) of the single crossing up intervals w;
preassumed to be stochastically independent..

Distributions of w; and w; extracted from everyday field measurements of environmental
noise show that these probability densities can approximated quite well by a function of the

type
g,(w) = x" Ve I T(n), 4)
where typically 1/2 <~ n <= 3/2. Due to the inherent system property

W+U = T = const. 5)

W and the total U of the crossing down intervals u; (see Fig. 1) are strongly connected by
the measurement time interval. They have to share the same available time reservoir T
among themselves. Also the variable from the type u is assumed to be stochastically inde-
pendent. The most simple physical models that can create the quantities u; are the time
distances between the separate passing by events of aircrafts or of vehicles if there is traffic
with very low intensity.

As the u; and w; always occur in an immediate alternation, they generate "stochastic
periods", for example in Fig. 1 from the beginning of u; to the end of w; . Hence to the



variable of type u the same number n can be attributed as to the variable of type w . Ac-
cording to these system properties, primarily the kind of conditional probability which is
acting here, the final p.d.f for W now can be expressed. For this purpose we also need the
p.d.f. of the crossing down total U denoted here by y(U,n) . This p.d.f. can be calculated
completely analogous to eq. (3) by replacement of w and g(w) by u and its p.d.f Asthe
basic p.d.f g(w) is in general a continuous function by eq. (3) also the p.d.f ¢(W.n) is
continuous n W . Thus if ¢(W,n) is also clearly dependent on n it can be expressed as a
continuous function of n . This corresponds with reality where usually a noninteger number
of stochastic periods is cut out by the measurement interval T . Hence the final state density
of W i e. itsp.d.f denoted by ¢(W,n,T), can be expressed as

d*PW,n,T) = PIWSW'SW+dW,n<n'<n+dn|W+U =T}
= anT) - oW.n) y(T-W.,n)dW - f (n,T)dn (6)

_ %y KW,n,T)dWdn .
In eq. (6) a(n,T) denotes a factor which normalizes @(W,n)-w(T-W,n) to unity over the
parameter space Sy = {W:0<W < T}. The p.d.f. of the crossing number n € R* is deno-
ted by fn,T).

3.2 Explicite representation by expectation values using the Central Limit Theorem

In favor of a comfortable presentation and evaluation of the egs. (3), (6) and (2) in terms of
easy accessible observables the basic expectation values u, W,

n.=T/(u+w) @)
and also the variances o, of u; and o, of w; are used.
In eq. (1) we have a linear sum of the crossing up vector components w; . If there is a suf-
ficient high number of crossings in T , the sum in eq. (1) which is distributed in general as
expressed by eq. (3), becomes approximately a normal distribution, what is the well known
content of the Central Limit Theorem (C.L.T.) ([1], ch. 5.3). The mean value parameter of
this p.d.f. is

W =n-w (8).  The variance parameter is O‘%V = ﬁo%v . 9)

The normal distribution

(x—p)°

Ne(, 0*) = N(x;p, %) = J—GCXP 2 (10)

([1], ch. 3.4) is specified here by the index x representing symbolically the variables W or
n . As in [1] is cited generally, the approximation by the C.L.T. will be good if n is greater
than 25 or 30. It can easily be shown by computer aid that if the distribution is of the single
sample type eq. (4) , already a value of n as small as 7 yields an adequate approximation: In
this case the deviation of the confidence limits [1][2][3] from their values which result from
the exact p.d.f. is less than 10 % and thus tolerable. Hence the p.d.f. @(W,n), eq. (3) can be
denoted as



o(W.,n) = N(nW,no“zv) (11)
and corresponding y(U,n) = w(T-W,n) by
w(T -W,n)= N(T -nil,nc?) . (12)

From these two eqs., after some algebraic rearrangement, follows

oW ,n) y(T-W,n)=
nw ol +(T-ni)o?,  oro
e

: Nn[n, 0”21] (13)
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where
vp = 1/(H+Ww) (14)
is the mean frequency of crossing up and crossing down intervals respectively. The number n
is still a freely varying parameter.
It is remarkable that in consequence of the constraint eq. (5) the variance of W is primarily

determined by the smaller of the two variances o, and o, . For the crossing number the ex-
pectation 1 is determined according to eq. (7) and its variance by

@+

(7 + W)

n

(15)

which is composed additively by two stochastically independent terms. The phenomenon
"nmumber variance" has already been mentioned and shortly discussed in [6].

In favor of a relatively simple performance to present the right hand of eq. (6) in terms of the
basic parameters T, n resp. @, U, W, o, and oy, itis convenient - and also justified by
the measurement conditions in the daily practice - to presuppose that the measurement time
interval T covers Nyy [...] almost completely. For control that this condition is met, an ade-
quate criterion for the required minimum crossing number is to be established. With respect to
the nearer, i. e. the crucial edge of the sample space to cut off the p.d.f. this criterion is

H 2 Zlg2 O. (16)

In eq. (16) z denotes the quantile of the N(0,1) distribution which results from a partition
1-a/2. According to this o indicates the maximum possible deviation of an integration over
the distibutions in eq. (13) in comparison with an unbounded integration which yields unity.

If the corresponding parameter included in eq. (13) are inserted in eq. (16), in the worst case
of W for the upper edge of the sound pressure level distribution, i. e. if W << # and un-

der the assumption that the variance coefficients of the stochastic variables u; and w; i e.



vy =0y, /u and v, :=s, /W donotexceed the order of magnitude 1 considerable, then
easily can be shown that the general condition for the minimum number required is simply

2
no2 Z_,m- (17)

For an approximation of the normal distribution for example to at least 99 % (i. e. a<0,01),
z=126 isnecessary and n hastobe 7 at least. If the condition (17) is also met for n, this

arameter canin N, [...] and o* be replaced by @ (see eqs. (13) and (16)). If the condi-
p n n

tion (17) holds and eq. (13) is inserted into the definition eq. (6) the normalizing of the W-
part of ¢(W,n,T) to unity yields

a(T,n)-T/p-Nn[ﬁ, 0,21] = 1. (18)

With this normalizing condition we get
sW.nT) = Nyl[-]- f(nT) (19)

For the calculation of the first and second moments of n to be performed, the p.d.f f{n,T)
must not necessaryly be known explicitely. Only the mean and the variance of n are needed.
Despite of this the explicite function f(n,T), at least if condition (17) is met, is of interest. The
cumulative probability F(n,T) of the sum of n periods uj+w; dependent on the length of
time interval T over which it is established, can be expressed by

T W
F(nT) = | [ .n) y(¢' W' nydw" dr'. (20)
'=0W'=0

If (17) holds then the integration over = W  yields the normal distribution
N, t-[n~(ﬁ +W), n(o'lzl + O’%v )] . From the corresponding cumulative distribution function

®(T,n) the p.d.f fn,T) can be derived by
_AB(T,n) _ _?5Nt-(t'—n-(E+W)) e

- > Na(@,02) . (1)

f(nT) =

0
Thus the final form of $§(W,n,T) is

o +(T-n)a,, oo, N [,7’02], (22)

W) = Ny| = 55" |

It is here to be emphasized that in eq. (22) Ny , in extension of the strong definition of the
normal p.d.f, still depends on n .



4. VARIANCE OF THE CROSSING TIME IN TOTAL AND OF THE PARTITION

All components of the p.d.f ¢(W,n,T) , neccessary for the further operations, now are prin-
cipally known, based on the distributions of the w; and the u; variables. Using eq. (22) the
first and second moment of W , the crossing up in total principally can be calculated by inte-
gration over W and n . These moments are required to determine explicitely Var W ac-
cording to eq. (2).

The first moment of W is to be calculated by integrations of (22) and using eq. (7) . It is
simply

W=nw=—2_T=gqT. (23)
u+w

To evaluate the second moment the integration over W yields

n(Wozzl_ﬁo%v)+TJ$v : )

w2 (n) E +no?. 24)

For abbreviation o* is introduced by
1/6*2 = 1/c,2 + 1/c,2 . _ (25).

Integration of (22) over n , using the known moment properties of the normal distribution,
yields

w? = T?V_Z(n)-N,,(ﬁ,oﬁ) dn
0

- a7 102 5 (7% + )T o2~ +2AT o2, (W, ~ % ) + 1264 | +7 o
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(26)
Hence according to eqs. (25), (23) and (2) and after an algebraic rearrangement we arrive fi-

nally at
m 2 W 2
v W = {( V(2 4 )
u+w u+w

and due to eq. (1) at

— — N2 — \2
Var g = n (_u_) o? +(_w_) o |. (28)
72 |\u+w) ¥ \u+w)

The "master equation” (28) was presented the first time in [2]. Due to the relations




w u — n
= 29 = 30 vVi= — 31
I (29) o (30) T (31)
equivalent presentations are
2.2 2.2
19
Var q = ( 202 +q20‘2) T uw (V2 +v2) = q“_qw (V124 +v%v) . (32 a,b,c)
v n

[2]. It can be stated that the variance formulas eqs. (27) and (28) are exactly valid in the limit
of very high crossing numbers n . Since n does not necessarily appear as an intrinsic system
parameter in eq. (28), what is evident by the first of the egs. (32), it can be concluded that
formula (28) is also valid for arbitrary values of n at least as far as they meet the condition
(17). This is also supported by the fact that the concepts of mean and variance are not bound
on a particular distribution as for example N(j,62). For application of eqs. (32 a,b,c) in
measurement practice, instead of the expectations 1, v, U, W, oy and oy, , the
corresponding estimators evaluated from the vectors u; and w; are to be inserted. These are
for T the observed crossing number n in T, for v,theratio /T andfor u and W the
average of the u; and w; respectively. In addition the c-quantities are to be replaced by the
corresponding standard deviations [1]. The parameters q, and qy, (qytqy:=1) and T are
constants to be chosen according to the type of measurement task.

5. CONCLUSIONS

It can be demonstrated that the variance of the partition which is imposed by a fixed level on
the intsantaneous values of a stochastically varying signal like an environmental sound pres-
sure level can be derived with transparency by aid of the Central Limit Theorem of Statistics.
Although this principally implies an approximation it has the advantage to allow an explicite
treatment of the appropriate directly observable parameters of the signal's microstatistics. It
can be concluded that the highly simple and, as to be expected, completely symmetric final re-
sult is valid in general.
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