
FIFTH INTERNATIONAL CONGRESS ON SOUND AND VIBRATION

DECEMBER 15-18, 1997
ADELAIDE, SOUTH AUSTRALIA

Invited Paper

OUTPUT PROBABILITY OF
AN ENVIRONMENTAL VIBRATORY SYSTEM
WITH A NON-LINEAR

Seijiiro Hirornitsu *

FEEDBACK ELEMENT

and Mitsuo Ohta **

* Faculty of Economic Sciences,HiroshimaShudo Univ., Hiroshima City, Japan
XC*Faculty of Engineering,KinklUniversity, Higashi-HiroshimaCity, Japan

Abstract

A statistical treatment for the output probability is proposed by introducing
a statistical Lagrange series expansion method, where a general random process of
arbitrary distribution type is passed through a time-variant linear environmental vi-
bratory system with an arbitrary non-linear feedback element. A typical example is
seen in an environmental vibratory system described by Duffing’s non-linear differ-
ential equation. In order to find the effect of non-linear feedback element reflecting
an environmental criterion, the explicit expression of the output probability distri-
bution is derived in the general form of non-orthogonal expansion series, reflecting
the effects of the forward linear element of the system into the first term. In view
of the arbitrariness of the input characteristics, non-linear elements and fluctuation
forms of system parameters, the validity of theoretical expression is experimentally
confirmed by the method of digital simulation.

1. INTRODUCTION

As is well-known, the non-linear feedback operation in various types of actual vibra-
tory systems may be conveniently divided into two categories: unaviodahley present, and
intentionally inserted non-linearities. As an example of the former the most prevalent
forms of unavoidable non-linearity are the saturation and the third power of elasticity
characteristics as seen in soft and hard spring forces of Duffing’s non-linear vibratory sys-
tem[l]. As an example of the latter, it can be taken up to add some artificial constraint to
an elastic term as a positive control in the meaning of an environmental counter-measure,
such as the use of a,stopper in vibration control of vehicles and power turbo-governors. It,



is obvious that the above non-linear operation in the environmental vibratory systems is

character zed as a non-linear feedback operation if the total vibratory system is illustrated

by a block diagram of closed-loop type as shown in Fig. 1.
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Fig. 1 A vibratory system given by Duffing’s non-linear equation.

On the other hand, when a statistical analysis for the prediction and control of environ-

mental vibratory systems is especially sought, the following two approaches are basically

important:

(1)

(~)

Generating approach; where main attention is paid to the internal deterministic
mechanism based on mathematical relationships or physical laws. The possible
variety of probabilistic behavior of the output fluctuation is then considered by
{lsing the probabilistic measure-preserving law associated with the above a priori

information of the system transformation.

Integrated approach; where a universal framework for the output probability ex-
pression is introduced in advance or realized automatically. The specific features of
internal mechanism and of input statistics are reflected successively into the char-
acterizing parameters of the probability expression. This approach is, for example,
seen in Wiener’s classical theory of non-linear systems, where the combined net-
works by Hermit e type non-linear elements and Laguerre filters are introduced in

advance[2].

On the basis of the latter point of view, in this paper, a statistical treatment of output
probability is proposed in the form of a universalized theory for acutual cases when an ar-

bitrarily distributed random signal passes through a time-variant linear vibratory system

with an arbitrary non-linear feedback element, with special reference to an environmental
non-linear vibration. Namely,

(1)

(2)

If a statistical method which is more effective for the close-looped system is especially

sought, it is necessary to focus attention on how an output probability distribution
of the system is affected by the existence of a feedback element. For this purpose,
the explicit expression of the output probability distribution is newly derived in the
general form of non-orthogonal expansion series, i.e., the statistical Lagrange series

expansion.

On the other hand, if we especially attend to the temporal characteristics i.e.,

memory effect of the forward linear element, a different approach is possible by

taking instantaneous response probability without memory as the first expansion
term[3].



(3) ln view of the arbitrariness of possible input statistics, the possible variety of non-
linear elements and fluctuation pattern of system parameters, and the complexity of
the statistical treatment involved, the method of digital simulation must necessarily

be utilized for experimental confirmation. The experimental simulation results are
in good agreement with the theoretically calculated values for typical model cases.

2. MULTI-VARIATE LAGRANGE SERIES EXPANSION

The single-variate I,agrange expansion is known and proved from the viewpoint of
complex function theory[4]. We introduce the multi-variate form to treat the memory
effect of the system; the result is as follows:

[Theorem ]
Consider two functions, ~(Z;) and F’(Z)(Z = {21, 22,..., ZK}), which are infinitely

differentiable over (–m, m). If Z~ = Xi + ai~(Zi) (ai is an arbitrary constant for i =
l,~,.e., K), F’(Z) can be expressed in the form of expansion series:

F(z) = F(x)+ ~ ~ 1

n=l nl+n2+.., +nh-=n nl!nz!...n~!

w}lere X = {Xl, Xz, . . ., Xk-}. When ni is equal to zero,

int ergral over (–cm, Xi ).

3. FEEDBACK EFFECT ON THE OUTPUT

(8/8Xi)”i-1 represents an

PROBABILITY

Consider a time-variant feedback system with finite memory shown in Fig. 2. When
an arbitrary input sequence, Xi(i = 1,2, . . .), is passed through the system, the output
seqllence, Zj(~ = 1, 2, . . .), at an arbitrarily sampled time point, t = tj, is expressed as

Zj = ~ CYi(Xj-i+l – .f(zj-i+l; P)), (2)
inl

where a = {al,az,. . . , al} : descrete impulse response function in the forward linear ele-

ment and~ = {/31,/?2, . . . , ~r } : parameters expressing the non-linear feedback operation.

Xi +

Fig.2 A linear vibratory system with a non-linear feedback element.



.3.1 Basic formulation
From a structural viewpoint of the non-linear feedback system under consideration,

the input-output relationship, Eq. (2), can be rewritten as

Zj = (j – h(Zj;~,~), (3)

where

(j = ~ CYiXj.i+~
i=l

and 3

‘(zj; a)P)= ~ ai.f(zj-i+l; P)).
i=l

3..2 Muti-variate probability expression
Let us now introduce an arbitrary function, q(Z), of multi-variate type, as a kind of

catarytic function for the purpose of reorganizing the probability expression. P() and its
successive derivatives satisfy the following condition:

where rj > 0. The above arbitrary functions, P() , are sometimes called a set of Baire
functions. Our present purpose is to derive a specific probability expression which is
matched to investigating the feedback effect to output response on the basis of the statis-

tics of random input, signal, X, and system parameters, cr and ~. Here, the probabilistic
stability for the output is assumed[5].

Consider an expectation with respect to P(Z):

—w —co —co

\

Let ~ be the definite integral inside <.>0,6. Using the multi-variate Lagrange series
expansion, we can obtain the following relationship:



Carrying out an integration by parts (~j – 1) times for e~h variable, (j, respectively

and considering the limiting condition, Eq. (4), Eq. (6) becomes

(7)

By using the same procedure(integration by parts one time for each ~j), we obtain the
following relationship:

J=fj ~
n=on,+n,++?z~=n ‘1 !nz! lnK!.7’.T”””f ’~(z)

—m—m —w

where we replace the variables ~ with
Eq.(8). Substituting Eq.(8) into Eq.(5)
tion, we consequently have

Z because of the definite integral operation in
and exchanging the integral for averaging opera-

8K (fi{h(zi;@+)}”’8zn,_1az:::,K.~znK_, P,(zla,p))1dZ =O.
~Z~ 8Z2 -. “az~ i=~ 1 2

. . K Cr.lfl
(9)

Because of the arbitrariness of yY(Z), P(Z) is expressed by the series expansion of
non-orthogonal type, as follows:

P(z)= ~ ~
1

n=o n~+nz+.+n~=n nl!nz!... nK!

In practical problem, P.Y() with respect to the random input sequence, Xi, may be
usually given instead of P< with respect to the artificially introduced variable, (i. lJsing

the measure-preserving law: P<((@,p)= PY(q~,P)l~x/wl IX,+(,. Thus,M“(lo)
can be rewritten as



P(z)=

Hereupon,

(~Px(xlcr, @)-y*Z )
00 1

Id’1
+x ~

J] Ci,p Zj+Zi n=l nl+n~+...+n~=n nl!nz!...n~!

8K

(3.z~az~““ ({~ h al.f(zj;P)+~ aif(zj-~+I;P)}n’“a.zk-Iq[~=~ i=2

/jn-h-

azyw;’-l ...a.qyl
P~(xla,p) y *Z

)
(11)

JI Cr,p Z:’+z,

( l)partially differential operations with respect to Zj denote differentiation along each
sample path and the notation Xj * Zj expresses the transformation: Xj = (Zj —

zi=2 %~;-i+l)/% “ That is, past values of the input sequence, {X1, X2,. . . . A’j-l }, and
the output sequence, {Zl, Zz, . . . . Zj-l }, are specially distinguished by putting primes at
a certain time point, ~. Accordingly, all differential operations in Eq.(11) are carried

out with respect to the present value of the output,, Zj (~ = 1, 2, . . . . 1{), where all past
values of Z’)s are considered to keep constant. After completing all differential operations,

replacing operations are carried out as shown by Z: + Zi.
(2)It must be noticed that the first term of Eq.(11) exhibits the output probability

based on the forward linear element and the second and higher expansion terms reflect
the non-linear operational effects in the feedback element in terms of the probability form.

3.3 Special cases
(a) Single-variate probability expression

In a special cassewhen the vibratory system is a zero-memory (memoryless) type( K = 1
in Eq.( 1l)), the output probability density P(Z)and cumulative distribution Q(Y)(Y =

(Z – p)/u) functions are reduced respectively, as follows:

(b) Input/time dependency of parameters
In particular, when the random input, Xi, is statistically independent of the param-

eters, a and ~, the condition on cx and ~ is eliminated in the conditional probability
expression of Eqs. ( 10)-(13). Also, when the system is time-invariant, the averaging oper-

ation < . . . > on a and ~ is eliminated too.

4. EXPERIMENTAL CONSIDERATION

The objectives of the experimental study is to see how the probability distribution of
the output fluctuation is influenced by the non-linear operation in the feedback element



and memory effects oft he forward linear element and/or the fluctuation form of thes ystem

parameters. For this purpose it is a good plan to classify all possible types of actual

random input and non-linear feedback operation into some idealized special cases, where
the above aribitrariness for the input and the system characteristics may correspond to
reflection of actual situations of the environmental management problems. In the present
experiment al consideration, all random inputs consists of random numbers of specified
distribution and normalized with mean O and variance 1. Thus, we will confirm the
theoretical results by means of digital simulation.

~.1 Experimental models
(a) Random input models

I) Gaussian distribution, 2) Uniform distribution
3)logarithmic exponential distribution
4) Gram-Charlier series type

PX(X) = n(X)+ An@J(X)+ Bn(4)(X)+ ...;
n(X):normalized Gaussian distribution, A = –0.2459, B = 0.0968.

(b) Non-linear element models in the feedback path

1) ~(z;~) = PIZ + PzZ3(soft spring model); PI = 0.25, ~2 = 0.12.5 N 0.25.
2) ~(Z; ~) = tanh /3Z(hard spring model); ~ = 0.5 N 2.o.

(c) Linear element models in the forward path
l) Zer@memory type, gain < a >= 0.5 N 2.0.
2) Memory type, crl = 0.5, a2 = 0.05.
3) Memory type, crj = 0.5exp{–O.8(~ – l)}(j’ = 1,2, 3,4) .

1 I 1 I 1 I I
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4 . experimental samples
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Fig.3 A comparison between theory and Fig.4 A comparison between the-
experiment for Q(Y) (Eq. (13)) in ory and experiment for con-
the case that /(Z; ~) = tanh(2.OZ) ditional probability Q(Z21Z1)
with a zero-memory forward ele- (Eq.(14)) in the case that
ment (a = 0.5) and Gram-Charlier ~(Z;~) = 0.25Z + 0.125Z’
distribution type input random se- with memory: al = 0.5, az =
quence. 0.05 and Gaussian random

input sequence.



(d) Fluctuatin models of the parameters, cE,~
I) Aperiodic(uniform distribution) model, f[–O.25, 0.25].
2) Periodic(sinusoidal) model, 0.125 sin(2nt/ti).

4.2 Experimental results
Figure 3 gives a comparison between theoretical curves and experimental sample values

in a case a = l. O(zer~memory) and $(2; /3) = tanh(2. OZ) with Gram-Charlier distribu-

tion input model. Experimental confirmations of the multi-variate output probability

expression, Eq. (11) for the vibratory system with memory are carried out in terms of a

conditional probability distribution ,Q( 22121 ), experimentally defined by

Q(Z21U<21< v)= ~z’~“I’(Z1,Z2)dZ1dZ2/]“P(Z1)dZ1.
—COu u

(14)

Here, values of u and v are set to p – 0.25a andp + 0.25a, respectively(p and a2 are
mean and variance values of 21). An experimental result in this casse is shown in Fig. 4.

Hence, it has been experimentally confirmed that the present theory is useful for fairly

wide class of input, and system characteristics of the environmental vibratory systems.
Many other examples which are not shown here also give a good agreement between
theory and experiment.

5. CONCLUSIONS

In this paper, a new approach to the unified statistical treatment of the output proba-

bility distribution has been proposed, where random signals of arbitrary distribution type

are passed through a class of time-variant vibratory systems with a non-linear element in
the feedback path into which we can reflect environmental control and management pol-

icy. Experimental confirmations of the present theory are carried out by means of digital
simulation where various models are taken into consideration for non-linear elements and
fluctuation of system parameter.
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