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ABSTRA~: This paper gives a basic and essential idea of our works on the stochastic signal

information processing for acoustic environment, that is based not only on the lower order

linear correlation but also on various types of the higher order nonlinear correlations. The

importance of employing these higher order nonlinear correlations is discussed through the

concrete establishment of wide sense digital filters. These digital filters are fundamental y

based on the hierarchical expansion expression of Bayes’ theorem by using the orthogonal

polynomials. The proposed digital filters can estimate any kinds of statistics of arbitrary

functional type of a state variable including the lower order statistics connected with the

material-side countermeasurements (from a bottom-up way viewpoint) and the higher order

statistics connected with the human-side evaluation indices (from a top-down way viewpoint).

The validity and the effectiveness of these filters are experimental y confirmed by applying

them to the red acoustic environmental problems.

1. INTRODUCTION

Digital signal processing bounded only in the virtual world of computer has necessarily a

very high degree of freedom (The excess of analysis turns into foolishness ). That is, in the

virtual world of computer, the concept of time is just one of the axes in the N dimensional

space, and the operations from the present to the past would be possible (anti-causative).

However, if we discuss only in the closed world of computer, there are some apprehensions

that it artificially rarefies the dynamics on the time axis in the real world of actual engineering

(A skilled swimmer dies in the river). We have to open anyhow our eyes to the outer real
world. It goes without saying that the real universe is changing moment by moment not along

with an artificially operation time axis but along with a real time axis unable to go backward

(The greatest enemy offieedom is selj-indulgence ). Every existence is a historical existence,



which was ever, is now, and will be, a Heraclitus’ ever-living Fire following a natural law

(Freedom is a self-consciousness of inevitability. There is no freedom without law (Hegel); He

himseZf is his greatest enemy). Sometimes, the information processing along with this real

time axis is called as a “signal information processing” in distinction from a mere “symbolic

information processing”. The former must obey a causative law, however on the contrary, the

latter does not necessarily obey it, and in the “symbolic information processing” a variety of

artificial operations are possible. In this article, we positively take the standpoint of “signal
information processing” in order to clearly discriminate it from “symbolic information

processing” .
The acoustic phenomenon in the actual sound environmental system involves a variety of

compound problems. Not only the natural but also the social factors make them further

complicated and diversified. Moreover, man’s response to it (as individual and/or group) is not

originally uniform, which seems to be the very manifestation of humanity. Therefore, we think

the human-side noise evaluation standards should be made from the delicate and multifarious

viewpoints, which admit every possible complexity, variety, and minuteness. In fact, many

kinds of noise evaluation standards are proposed so far from all sorts of viewpoints. They are,
for example, L~ (Equivalent Sound Pressure Level), L& (Day-Night Average Sound Level),

~P (Noise Pollution Level), LX (( 1OO-X)Percentage Point of the Sound Level Distribution),

TNI (Traffic Noise Index), and so on [1,2].

Principally, an acoustic phenomenon is not a propagation of substance but a propagation of

energy and has no D. C. component. So, the original sound pressure with no any carrier wave

is full of changeability and its frequency range is so wide that it can have a variety of fluctuation

patterns with non-stationary and non-Gaussian properties. These are the special characteristics

of sound environmental system. Therefore, especially in the stochastic state estimation

problem, we can not all-out rely upon only the usual orthodox methodology like Kalman filter

[3,4], which is based solely on linearity, Gaussian property, least squares error criterion, first

order correlation, and/or the lower order statistics of mean and variance, and so forth. It might

bean origin of research to take the fine-grained and generalized analytical stance as much as

possible (A small leak will sink a great ship). Concretely, we must first admit the complexity
and the variety of the acoustic phenomenon without simplifying, from the phenomenon-

oriented viewpoint rather than from the one-sided methodology-oriented viewpoint (A stitch in
time saves nine ), and then, must positively sit face to face against it.

In this article, we show through some actual experiments that how the various type higher

order nonlinear correlations contribute to the acoustic signal information processing more

effective y than the usual case of employing only the lower order linear correlation.

2. BASIC STANCE FOR SIGNAL INFORMATION PROCESSING

The prediction and/or estimation problems are essentially to pickup one most possible value

among many other probable data within the allowable error limit. Therefore, ultimately, it must

be probabilistic. The deterministic signal information processing of sound environmental data

has in essence a limit of the estimation accuracy, because the sound data has originally a variety

of stochastic fluctuation patterns in the presence of background noise.
The prediction and/or estimation problems of sound environmental systems have the

following two big aspects. One is the bottom up causative aspect, i.e., which is the



extrapolation from the past to the future by using the deterministic and/or the statistical

information on multifarious correlative relationships latent in the past data (The best prophet is
the past ). The other is the top down normative aspect, i.e., which is the selection of the

optimum error criterion, or in other words, the establishment of a goal for decision making by

man. Of course, it might be an origin of a signal information processing to combine

organically these two aspects (on the same ring and in the same stream of real time, if it is

possible). The basic doctrines of our works from two essential viewpoints in contrast, which

may be of somewhat overstatements, are illustrated in Fig. 1. Especially, in order to establish

the signal information processing methodology along with a real time axis with the firm

foothold on the physical phenomenon, it seems to be one of the basic attitudes to analyze the

physical quantities with a handhold of physical laws (e.g., law of inertia in a physical time),

and afterwards then to convert them to the human sensory quantities. From this point of view,

in some evaluation of the environmental sound data, it is important to first pay attention to the

physical quantities of universal type (e.g., power-scaled variable, energy or acoustic intensity)

rather than to the human sensory quantities. The advantages of using the power-scaled variable

is as follows: (i) it is a universal type quantity connected with every type of change in physical

phenomenon other than sound or vibration, (ii) the simple additive law of energy is valid, and it

is easy to make the “separation and/or integration” logic based on this additive law, (iii) it has a

kind of averaging function in itself (e.g., an inertia or a memory effect) over the multi-points or

over the multi-variables, and it sometomes enables the reduction of the multi-variate treatment

into a single-variate one, (iv) it has an aspect that it is connected fairly with the subjective
quantity as for the statistical evaluation indices of sound environmental data (e.g., L~ or L~P).
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However, this power-scaled variable (or an acoustic intensity) fluctuates only within the

positive region. It is under the control of a basic binding condition that the variance approaches

to zero when its mean turns to zero. Thus, in general, it shows the typical non-Gaussian and

non-stationary characteristics. Furthermore, the appearance of nonlinear transformation closel y

connected with the human response or with the physical countermeasure is a problem (e.g., a
transform from a sound pressure into an energy (or an intensity) as for L~ or LX, a logarithmic

transform, a transform into arbitrary stochastic evaluation quantities, and so on). Dozens of
noise evaluation quantities proposed so far are roughly classified into the following two
categories. One is the category connected with an energy averaging (its typical example is L~),

and the other is the category connected with the fluctuation pattern of noise or connected with
the shape of its whole probability distribution form (its typical examples are LX

(x=1,5, 10,50,90,95)). Many of noise evaluation quantities actually in use are the compromise,

the combination, or the transform of the above. The methodology-oriented evaluation stance
itself comes into a big problem at the very start of research (A frog in the well doesn ‘t know the

open sea ). For example, the main objective of Kalman filter is an estimation of the conditional

mean value, and the conditional covariance is only regarded artificial y as the criterion of

estimation error.

Generally speaking, not only the lower order statistics but also the higher order statistics must

be considered in order to find the signal information processing method to be matched with

both sides of the “matter-oriented countermeasure” (bottom-up) and the “human-oriented

evaluation” (top-down) ( LOOA cm boffi sties of ttie s.z”el~. The lower order statistics are

originrdl y full of steadiness and reappearance supported by a large amount of data. That is,

they are indeed useful for the evaluation of a hard physical system, and are certainl y concerned
with the “matter-oriented countermeasure”. However, the auditory system is very sensitive to

the end of the sound level probability distribution form. Accordingly, the estimation of the
higher order statistics supported, on the contrary, by a small amount of data (e.g., L5 or LIO) is

essential for the evaluation of the environmental sound. For all of these reasons, it seems

essentially to be best to build up the organically unified solid structure without any damaging

the original whole image, i.e., the lower order statistics as a trunk of a tree, and the higher

order statistics as green leaves on the gracefully shaped branches (Rome was not built in a

day). For example, in the modeling of the physical phenomenon, the structure of the model is

usually determined by a time series analysis based on the lower order linear correlation (A word

is not enough for the unwise ). Here, the higher order fluctuation is often taken, sometimes

artificially, to be a noise component. The objective sense of value, which can treat the

complexity of an object and the human response as they are, is to be thought much of taking the

preference of the phenomenon rather than the artificiality. The pliability to use positively a

various type of the higher order nonlinear correlation other than the usual linear correlation is

first required to cope with every type of variability of the objective phenomenon and the delicate

human-side evaluation index. Even if the dynamic model is employed, which continues to go

forward and forward (A hunter in pursuit of a deer sees no hills ), it is sometimes needed to

come to a stop at each time-stage, and then deeply pay attention to the end of fluctuation (Still

waters run deep ). It is necessary to construct a whole solid image of a successive state

estimation algorithm by introducing every kind of the delicate posture of the statistical analysis

(series and parallel, force and love, production and natural environment, all of these need to be

unified) (When one closes his hand, it becomes a fist, and when he opens it, it becomes a



palm). Movement does not confront stillness but they are complementary to each other. After
all, movement does not include stillness. On the basis of these two contrastive viewpoints, we

should construct a solid structure to meet with a variety and a complexity of natural

phenomenon together with a human-side evaluation. That is, we must go through the concrete

affliction of finding out a signal information processing method where our attention is paid to

the relevance between the bottom-up physical countermeasure and the top-down human-side

evaluation, i.e., ultimately, technology and value.

3. IMPORTANCE OF THE UNIFIED HIERARCHICAL EXPANSION EXPRESSION

The introduction of a universal expression to describe every type of a probability distribution

of a real stochastic existence is strongly required at the very start of analysis. This is because

not only the mean and variance but also the median, the 90% range of distribution, a variety of

noise evaluation indices proposed so far, and/or the synthetic characteristic values, must be

predicted and/or estimated. In fact, we have often employed the infinite series expansion

expressions for the realizations of the concrete signal information processing algorithms

proposed in the following sections. This is not to discuss in complete separable form the lower
order moments, but to discuss synthetically a whole image after constructing a hierarchical

structure where the information of the higher order moments is incorporated as much as

necessary over the information of the lower order moments (Even the five-storied pagoda is

erectedfiom the first story ). The information of the lower order moments is located at the

beginning terms of the series expansion expression, and that of the higher order moments is at

the succeeding expansion terms.

The hierarchical structure and the systematic unification are introduced in this way from the

very start of analysis. The information of the lower order and the higher order moments cannot

be divided mechanically only from the practical business-like sense of value. If the lower order

information is only used, the higher order logical sense may be lost. On the contrary, if the

higher order information is only used, the physical foothold may be lost. We have to try to

avoid a risk that it automatically y falls into the self-righteous and one-sided research

unconsciously (A man bent on gain appreciates nothing else ).
The important problem is how we can reflect on the expansion coefficients of the series the

advance information of to what extent their statistics may be reliable and useful for the long-

term prediction. Therefore, even if the framework of the distribution is universal, the actual

effectiveness of this expression is naturally limited. Our notice must be taken to this point

especially for the sound environmental problem where the irregularity of objective

phenomenon, indeterminacy of future prediction, and multiformity of the response of man

come out particular y. For example, it is necessary to discuss the accuracy and the empirical

reliability of the processing results based on finite sampled observation data. The followings

must be further considered in more detailed: (i) how to determine an optimum number of the
expansion terms, (ii) how to determine an optimum number of sampled observation data, (iii)

the way of extracting the observation data from the population, and so on (A journey of a
thousand miles starts with but a single step ).

4. HIGHER ORDER SIGNAL INFORMATION PROCESSING FOR

ACOUSTIC SYSTEMS



Our present works start from the Bayes’ theorem, because it is the mathematical truth that can
be applicable even for the complex human-side evaluation indices (e.g., LX), and it is further

applicable for the non-Gaussian and nonlinear nature of the real system on the countermeasure-

side. If we start, like many other conventional works, from the stochastic differential equation

of the n-th order with Brownian motion as an input, the higher order infinitesimal of At is to be

very often neglected artificially from the very start of analysis. As a result, there is no place to

take into consideration the higher order statistics that are essential for the delicate estimation of

the environmental sound and vibration assessments. Another advantage of the introduction of

the Bayes’ theorem is that we do not need to make any artificial assumptions in advance on the

whole probability distribution form, or do not need to introduce any specific type artificial

evaluation indices without any physical meaning. Further, all the higher order nonlinear

correlation between input and output are naturally reflected in this Bayes’ estimation principle.

Thus, in our works, new types of general digital filters that can estimate not only the lower
order statistics (e. g., L~) but also the higher order statistics directly connected with the form of
a whole probability distribution (e.g., LX (x=1,5,10,50,90,95)) are derived based on this

Bayes’ theorem.

4.1 State Estimation Based on the Incomplete Observation Data with Amplitude Limitation

In the actual stochastic phenomenon, the observation process very often shows a complex

fluctuation pattern apart from a standard Gaussian distribution. Furthermore, the state variables
in the actual acoustic system is usual to fluctuate in a non-stationary form over a long time

interval owing to a temporal change of system parameters and/or statistical properties of the

random input, even if showing a stationary property in a short time interval. Especially, in the

actual case when the observed signal of the random phenomenon is contaminated by an

additional noise, it sometimes occures a loss or distortion of data owing to the existence of a

definite dynamic range or a reliable range of measurement instruments [5J.
In this Section, in order to reasonably removing this effect of observed data loss or distortion

based on an amplitude limitation, a new trial on the stochastic signal information processing

matched to this data loss or distortion is proposed from the fundamental viewpoint of study.

More specifically, a state estimation method based on the incomplete observation data with loss

or distortion is theoretical y proposed through an establishment of wide sense digital filter

under the actual situation with the additional noise of an arbitrary distribution type.

4.1.1 Acoustic System with Incomplete Observation of Amplitude Saturation

Let us consider an arbitrary acoustic system with state variable of arbitrary distribution type,

and express the system equation as:
‘k; 1 = Fk(xka‘k)> (1)

where xk denotes the state variable at a discrete time k, Uk is the random input with known

SkitlStl& and Fk( ) 1Sa knOWn nonlinear fUnCtlOnof xk and--ukat a discrete time k. Hereupon,

xk and uk are statistical y independent of each other. Furthermore, the observation equation is

established by considering the amplitude saturation based on the dynamic range of

measurement instrument, as follows:



Yk= Ek(xk,Vk)> ‘k= g(ykh (2)

where Ek( ) is the known input-output relationship in the case when the measurement data are

not affected by the saturation, and g( ) denotes the non-linear function describing the saturation

characteristic given by

{

a (y<a)

g(y) = yb(~;~$)b) . (3)

Therefore, yk is defined as the output signal of the acoustic system ‘at a discrete time k before

the signal passes through the saturation characteristic of Eq.(3), and zk is the actually observed

data at a discrete time k. Furthermore, vk is the additional noise with known statistics and is

independent of Xk

4.1.2 Establishment of Wide Sense Digital Filter

In order to derive an algorithm of successively estimating the state variable Xh let us consider

the Bayes’ theorem on the conditional probability density functions as the fundamental

relationship.
P(xkl Zk) = P(xk, zkl Zk_l)/p(zkl zk-1)> (4)

where Zk (={Z1, ~, ...> zk}) denotes a set of observations until a time k. Next, the conditional

joint probability density function P(xk, zkl Zk_~)of the state variable xk and the observed value
zk at a time k should be expanded in a general form of the statistical orthogonal expansion

series. Hereupon, the product of two marginal probability density functions for the state
variable Xk and the observation zk with a distortion of data due to the saturation characteristic g(

) is taken as the 1st term of the series expansion. These two fundamental probability density
fUnCtlOnsare denoted by P()(xk! ~_l) and p~(zkl ZkJ), which can be artificially chosen as the

probability density functions describing the dominant parts of the actual fluctuation, or as the

well-known standard probability density functions like Gaussian or Gamma type distribution

functions. Then, the orthogonal series type expansion expression of Bayes’ theorem is

obtained as [6,7]

(5)

where two functions $fi)(xk) and @$)(zk) are the orthonormal polynomials of degrees m and n,

with the weighting fUnCtlOnSPo(xkl zk-~) and P()(zkl ~_l) respectively, and mUSt SatlSfy the

following orthonormal relationships:

s‘#)(xk)o:)(xk)po(xkl‘k-l)dxk = am, (7)



S (8)@(2)(z~)@~)(z~)P~(z~lzk.~)dz~ = ~m.m

Based on the unified expression of Bayes’ theorem in Eq.(5), the recurrence algorithm for
estimating an arbitrary i-th order pcdynomial function fl(xk) of the s~te variable ‘k can be

derived. Here, the function fi(xk) can

{$:)(xk)}:

‘i(xk)=i&hj@jl)(xk)>

be expressed in a series expansion form by use of

(9)

where hj are appropriate ~onstants in the orthonormal expansion of fi(xk). Thus, the estimate

for the function fl(xk) can be easily derived in a universal form of the infinite series exPansion

as fol~ows:
fi(xk) = < ‘i(xk)l ~ >

mm /. \ ,,..

In the above equation, the orthonormal

(lo)

relationship of Eq.(7) is used.

4.1.3 Realization of Estimation Algorithm

In order to make the general theory for estimation algorithm more concrete, the well-known
Gaussian distribution is adopted as the fundamental probability density function P()(xkl Zk.1)

for the state variable xk, because this probability density function is the most standard one”

Furthermore, the Beta distribution is adopted as P()(zkl Zk-1) for the observation ‘k with the

amplitude restriction [a, b] of the fluctuation range due to the saturation characteristic (cf.
Eq.(3)) of measurement instrument, as follows:

1 (xk- X;)*}
‘()(xki ~-l)=

c

exp{-
2~rk 2rk ‘

(11)

(12)

with

Then, the orthonormal functions with two weighting probability density functions in Eqs.(7)

and (8) can be given in the forms of Hermite polynomial and Jacobi polynomial [8]:



(14)

4r’(a~-y~+l)(a~+2n)r(a~+n)l?(y~+n)
$f)(zk) =

* zk-a
Gn(a~, yk; @ (15)

r(c2~+l)n!I’(n+a~-y~+ m(y~)
Thus, the expansion coefficient F- can be concretely expressed in the form reflecting the

effects of the observation mechanism causing the above amplitude saturation and the statistics

of the additional noise.

I/r(a~-y~+l)(aj+zn)r(a~+n)r(y~+n)——‘--k! r(a~+l)n!r(n+a~-y~+l)r(yj)

Xk- X; * * f!(%(xk?‘k))-a< HJ ‘) Gn(ak~Yk; b-a

T

)1zk~ >.
rk

(16)

Furthermore, by considering Eq.( 1), the prediction step essential to perform the recurrence
estimation can be given in a general form for an arbitrary Polynomial function hr(xk+ ~) of the

state variable as follows

h;(xk+l)=+(xk+ 1)1~-l > = +(%(xk> ‘k))l‘k-l ‘. (17)

By use of the estimates given by Eq.( 10) and the statistics of uk, the above prediction algorithm

can be evaluated concretely.

4.2 State Estimation Based on Time Transitions of Moment and Probability Function

The random signal in the actual sound environment exhibits various non-Gaussian

distribution forms, and is usually contaminated by the inevitable additional external noise (i.e.,

background noise) of arbitrary distribution type. Based on the observed noisy data mixed with

the external noise, in order to estimate several evaluation quantities for a specific signal (e.g.,
~, Lq and peak value etc.), it is fundamental to estimate the fluctuation wave form of only a

specific signal at every instantaneous time.
On the other hand, in the actually observed time series data for the sound environment, there

certainly exist nonlinear higher-order correlations, in addition to a well-known linear correlation
of simple type. It is obvious that the introduction of various type higher order statistical

properties of the state supported by the system and observation equations which are frames in

the state transition provides the precise state estimation in some new type noise removal

algorithm.

In this Section, a digital filter for estimating recursively the fluctuation wave form of only the

specific signal based on the observed data contaminated by an arbitrary external noise of non-

Gaussian type is considered. Concretely, state estimation methods corresponding to each

model in two cases: i) adopting the time series regression model expressed in the first order

moment form and ii) adopting the whole of conditional probability density function without

smoothing the fluctuation form, as the system equation, are derived [9].

4.2.1 Time Series Regression Model Based on Expansion Representation of Distribution



Consider a stochastic process x(t). Let its instantaneous value at a discrete time k be Xk All

of lln~ and nonlinear cOHelatlOn information betWeen xk and the p-variable past Value xk.1

(= (Xk.l, ‘k_2, .. .. xk_p)) is contained in the conditional probability densitY f~ction ‘(xkl ‘k-l)

of xk for given xk-1. Especially, when xk is to be predicted from xk.1, the ex~~tion of ‘k for

given xk-~.

?k = <xkl xk-~> = J’( xkp xkl Xk-l)dx~ (18)

i.e., the regression function, can be used as the prediction xk for xk.

The prediction error ck is defined m

Ek= xk - ;k (19)

If the relation between xk and xk-1 can well be represented by m.(18), ek is an acciden~ error

and can be represented by a white noise model with mean O. For this purpose, first, the joint
probability density function P(xk, xk-1) for time series xk and xk_l is exp~ded m follows”

The standard distribution representations P()(xk) and P()(xk_l) are considered which m

approximate the essential configurations of the fluctuations of xk ~d ‘k-l, respectively” ‘sing

those distributions, the joint probability function is expanded in advance in the orthonormal
form as follows:

‘(xlv ‘k-l)= ‘O(xk)po(xk-l)mi+,ioAmn*:)(xk)*:)(xk-l)J
=

(20)

with

n=(nl, n2, .... Q, ;=i; ...i”
n=O nl=On@ n@

In the foregoing, two functions ~~)(xk) and ~~)(xk-l) me orthonorm~ @Ynomials satisfying

the orthogonality conditions:

s (21)~~)(xk)~$)(xk)%(xk)dxk = b~>

s
~~)(xk-l)~f)(xk-l) PO(xk-l)dxk_l =

o
‘mi%’ 4(m=(ml, m2, .... m ). (22)

All linear and nonlinear correlation informatio;s concerned with the regression between xk and

xk-1 are reflected hierarchically in the expansion coefficients Amn. Based on the well-known
Bayes’ theorem and using Eq.(20), the conditional probability density function P(xkl xk_l),

which is essential in extracting various type linear and nonlinear correlation informations, is

given in the expanded form as
P(xkl xk-~) = P(x~ xk-l)p(xk-l)

‘O(xk)m~a n;oAmm~~)(x@f)(xk-l)
== . (23)

; A~~f)(xk-~)
n=O

Then, by using Eqs.( 18)( 19) and (23), the new autoregression model for the stochastic process
xk is derived as follows:



(24)

(Xk= i~cjv~l)(xk),Cj: expansion coefficients).

We have confi~ed that the proposed regression model agrees with the well-known AR model

when the stochastic process is Gaussian [10].

On the other hand, by using the additive property of acoustic intensity, the observation value
yk (in intensity variable) under the existence of external noise can be expressed as follows:

yk=xk+vk. (25)

We assume that the statistics of externalnoiseVk(onanintensity=le) areknowninadvance”
This Section is to find a digital filter for estimating a specific signal xk based on successive

observations of yk Hereupon, the multi-vatiate state xk sui~ble for the recursive estimation is

considered. Each expansion coefficient Am in the state transition law of objective stochastic

process (of Eqs.(23) and (24)) essential to perform the recurrence estimation must be estimated
based on the noisy observation yk because the instantaneous values of xk are unknown. After

regarding the expansion coefficients ~n (m~M; n~N ) as unknown parameters, we define as

~Ta= (al, ~, ... . al)T = (aJ), ~1), . .. . aTM)Tj a(m) = (Amo, .... Afi)T (m= O, 1, 2, .... M).

For the simultaneous estimation of xk and Amn, the following transition model on the

parameter is introduced.

ak+ 1 = ak (26)

(ak= (alJp ~,k, .... aU)T = (aT ,aT(0)J (lJk’ ““”’ a~~,k)T).

4.2.2 State Estimation Method for Specific Signal

In order to derive an estimation algorithm for the state variable xk of an arbitrary distribution

type, we focus our attention on the Bayes’ theorem as the fundamental principle of estimation.
Hereupon, since the parameter ak is also unknown, the joint probability density function of xk
and akmust be considered.--

P(xk, ak, YklYk-1)
P(xkyak!Yk) = P(yki‘k-l) ‘

(27)

where Yk is a set of observation data {yl, y.2, . . . . yk} until a time k. In Eq.(27), the
conditional joint probability density function P(xb a~ ykl Yk_l) showing an arbitrarY

distribution form can be expressed in the expansion series by taking the product of fundamental
probability density fUnCtiOnSPO(xkl Yk_~), P()(akl yk-~) and po(ykl Yk-1) for xk> ak and yk.

p(x~ a~ ykl ‘k_l) = ‘O(xkl Yk-l)po(akl ‘k_l)po(ykl ‘k-l)

~ ~ ~ B-6~)(x@~)(ak)e~)(yk),
1=0 m=on=o

B_= < 6~)(x#~)(ak)e~)(yk)1 Yk-l>> (28)

where fUnCtlOnS 6~)(xk), 6~)(ak) and e~)(yk) are the orthonormal @ynOmlalS hking the

fundamental probability density functions as the weighting functions. After substituting



@.(28) into Eq.(27), trough the same calculation process as Sect. 4.1.2, the estimate of an
arbitrary pOlynOmlZdfunCtiOn fi .J(X~ ak) (i = (i 1, i> .... i~T, j = (j 1, J> . .. . J~)T)of xk and ak

with the (i, j)-th order can be derived by taking the conditional expectation of the function

fi, j(xk> ak) and using the orthonomd condition of functions 6~)(xk) and e~)(ak), as follows:

i i i ‘~B-O:)(yk)
~,j(xk, @

1=0 m=oxd (29)= < fi, j(xk, ak)l Yk > = ?

where coefficients Dfi are constants in the case when the function fi, j(xb ak) is expressed in

the following orthonormal expansion form in advance.

(30)

4.2.3 Derivation of the Prediction Formula

Let the arbitrary Polynomial function with arbitrary i-th order of xk+ ~be gi(xk+ ~). In the case

of using Eq.(24) as the state transition, the prediction at a discrete time k can be given by

$ Cmt&),ky(xk) +~k+l)l Yk >
ma

g~(xk+ 1) = < gi(xk+ 1)1‘k z = < gi( (31)
a~~~v(xk)

with

Y(xk) = (~:)(xk),.... ~:)(xk))T. (32)

Furthermore, in the case of adopting the conditional probability density function of Eq.(23) as

the state transition law, using a property on thr conditional expectation, and using the property
that if the relationship between xk and xk+~can be sufficiently represented by the probability
distribution of Xk+~ conditioned by Xk the remaining fluctuation factor can be reasonably

assumed as an accidental error and is independent of Yk, the prediction of gl(xk+ ~)can be given

as

g:(xk+l)=“gi(xk+ 1)1x~ Yk>1Yk> “~i(xk+~)p(xk+~l xk)dxk+~lyk>
min{~}

T Y(xk)l Yk >,= < ~ ‘ma&),kY(xk)/a(0),k
m=o

(33)

(gi(xk+l) = ~ dm~~)(xk+~), ~: eXpanslon coefficients).
m=o

Furthermore, defining hj(ak+ ~) for an arbitrary pol ynomia.1 function with the j-th order of ak+ ~,
and using Eq.(26), the prediction for the function hj(ak+ 1) at a discrete time k can be given by

h*(ak+l) = C hj(ak+l)iYk >
J

= < hj(ak)l Yk >. (34)

The right sides of Eqs.(3 1), (33) and (34) can be obtained from the estimates (for the
pdynomid functions) of ak and xk, and the recurrence estimation of the state can be achieved.

5. APPLICATION TO ACOUSTIC ENVIRONMENT



In order to examine experimentally the usefulness of the proposed signal information

processing methods, these are applied to the actual observation data in a specific acoustic

environment.

5.1 Application to Room Acoustics

The state estimation method based on the observation with the amplitude saturation under the

existence of the additional noise (background noise) is applied to the estimation problem for the

reverberation time of a room. For the formulation, let us focus on the Sabine’s relationship[l 1]:

~ = eOexp{-skk}, Sk= sAt, s = 61n10/T, (33

where ek is an average acoustic energy at k-th discrete time, T is a reverberation time of the

room, and At denotes the sampling interval. Therefore, in the realistic situation with the
existence of a background noise, the observation zk at the k-th discrete time in the case of

measuring the sound level by a sound level meter with a finite amplitude dynamic range is

given by
v@

– loklglo(~ eXp{-Skk}+10‘k= g(yk)> yk – ), (Eo = 10-12watt/m2), (36)

where vk is a background noise le~el at

the k-th discrete time and its statistics can

be easily obtained by measuring the

sound level in the case when the signal
~ is absent, because the background

noise usually shows a stational property
in the fluctuation form. Because a

reberveration time to be estimated is

originally constant, the following

dynamical algorithm can be obtained for

a computer technique

sk+l = %, (Tk = 61n10/Q. (37)

By regarding Eqs.(36) and (37) as the

observation and system equations

respective y, the state estimation method
proposed in Sect.4. 1 can be concretely

applied to the problem of estimating a

rever?xxation time.

Figure 2 shows the estimated result in

the case when the expansion terms with

the orders m~2 and =5 are utilized in

Eq.(10). In this experiment, the

amplitude restriction is taken a=90 [dB]
and b=80 [dB] in Eq.(3), corresponding

to one of several classes of dynamic

range. The same estimation result on this

parameter is obtained in spite of

artificially empolying several kinds of
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arbitrary initial values. The estimated result is in good agreement with the true value obtained in
advance in the idealized situation under the absence of a background noise. Furthermore, in

order to investigate experimental y the relationship between the precision of estimates and the

numbers of expansion terms considered in the estimation algorithm, the estimated results by use

of Eq.( 10) considering expansion terms with the orders ~2 and ~n’ for several values of n’

are shown in Fig.3. Here, let us define an estimate by use of the expansion expression from
the first expansio~ term to a term containing the coefficient F2n, in ~.( 10) as the n’-th

approximation of Tk It is obvious that the successive addition of higher expansion terms

moves the estimates closer to the true value.

5.2 Application to Machine Noise

The machine noise is adopted as an example of the acoustic signal showing some complex

time fluctuation forms, and the fluctuation wave form of a specific acoustic signal is estimated
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Fig.5 State estimation results for the machine noise based on the
time transition model of probability function.



based on the observed data (with sampling interval of 0.2 [s]) contaminated by the background

noise (i.e., white noise). First, by adopting Eq.(24) (with ~– 1) as the system equation, a

specific signal is recursively estimated. For comparison, the estimation results calculated based

on the same system equation linearized by smoothing the statistical fluctuation of a specific

signal as much as possible, by employing the standard state estimation method, are also

shown.

(38)

where Ek+1 is a white noise with mean Oand variance ~ in the same way as Eq.(24). Because

the parameter Gk in Eq.(38) is unknown (and then the system equation is nonlinear), xk and

Gk are simultaneously estimated by use of the extended Kalman filter [12]. The experimental

result is shown in Fig.4 (in the case when a:= 1.Ox10-9 [(W/m2)2]). The result by the

proposed method shows a more accurate estimation for fluctuation wave form of the specific

noise than the result based on the simple linear system model. Next, the estimation result in the

case of adopting Eq.(23) (p= 1) as the state transition law is shown in Fig.5. The estimates in

the cases of adopting the smoothing model of l%+(24) or Eq.(38) as the system equation are

affected by the pre-established values of o:. While the method adopting the conditional

probability (i.e., Eq.(24)) reflecting many of the statistical information is estimated more

precisely the true values as shown in Fig.5.

6. CONCLUSION

In this article, we have surveyed our past works on the acoustic signal information

processing based on various types of the higher order nonlinear correlation. Concretely, we

have discussed mainly about only several works related to the generalized Bayesian digital

filters, which can estimate the true fluctuation of the acoustic signal from the observation data

disturbed by an arbitrary stochastic type background noise.

In order to treat this kind of compound problem of a sound environmental system, it should

be absolutely avoided to first simplify the methodology, in both sides of value and technology,

by taking precedence of operational data processing (The beauty of scenery is lost on the keen
Sportwna?z).

That is, for this purpose, taking precedence of the real phenomenon, we have employed

positively not only the usual linear correlation but also a variety of the higher order nonlinear

correlations along with a real time axis as it is as possible. Concretely, we have found out

some generalized Bayesian digital filters in a wide sense by applying some hierarchical and

rational signal information processing on the observation data along with a real time.

At the start of analysis, the modeling of system and observation equations is important. In

this modeling, it is rather necessary to use positively much of the variation information, which

is often difficult to treat, without keeping away artificially unavoidable modeling error. That is,

it might be difficult to overcome this compound problem of real type only by the computer

treatment or only by just the handling of the Bayes’ theorem. Our attention should be paid to

the above point (Too much medicine is harmj@.
The validity of the methods proposed here has been confirmed experimental y by applying

them to some specific actual environmental sound data. However, we would like to get the



reader’s permission that a page limitation has to preclude an inclusion of the detailed algorithms

and many other experimental results.
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