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ABSTRACT: In the actual sound environment, a specific signal shows various types of
probability distribution forms apart from a standard Gaussian distribution due to the diversified
causes of fluctuation. Furthermore, the actually observed data often contain some fuzziness
due to the existence of confidence interval in measuring instruments, permissible error in
experimental data and a level quantized error in digital observation. In this study, a new
estimation theory for a specific signal, based on the observed data containing the fuzziness and
the effects of non-Gaussian property is proposed from the static and dynamic viewpoints.
More specifically, by applying fuzzy probability to a probability expression with an infinite
expansion series form, a static method to estimate the probability density function of the
specific signal based on the fuzzy observation data is first proposed. Next, a dynamical
method of estimating only a specific signal state embedded in the additional noise (i.e.,
background noise) with random fluctuation of non-Gaussian type is theoretically derived
especially in a flexible form applicable to those fuzzy observation data. Finally, the validity and
the effectiveness of the proposed method are confirmed experimentally by applying it to the
actual road traffic noise data.

1. INTRODUCTION

In the actual sound environment, the observation data are usually contaminated by the
additional external noise (i.e., background noise) showing various types of probability
distribution forms of non-Gaussian distribution. Therefore, in order to estimate several
evaluation quantities for the specific signal, like LX, L~ and peak value, based on the observed

noisy da@ it is necessary to consider not onl y the lower order statistics like mean and variance
but also the higher order ones connected with non-Gaussian properties.

On the other hand, the actual observed data often contain the fuzziness due to the existence
of confidence interval in measuring instruments, permissible error in experimental data and a
quantized error in a usual digital observation. Many standard signal detection methods



proposed previously have not considered positively the fuzziness in the observation data under
the restriction of Gaussian type fluctuation, for the simplification of theory [1]-[3]. Though
several state estimation methods for a stochastic environmental system with non-Gaussian
fluctuations have been proposed in our previous studies [4] ,[5], the fuzziness contained in the
observed data has not been considered. Therefore, there arises a problem on how to extend our
previous methods to a flexible form applicable also to the ill-conditionedness with fuzzy
observation.

In this paper, a new estimation theory for a specific signal, based on the observed data
containing the fuzziness and the effects of non-Gaussian property is proposed from the static
and dynamic viewpoints. More specifically y, by applying the fuzzy probability [6] to a
probability expression with an infinite expansion series form, a static method to estimate the
system parameters for an acoustic environment based on the fuzzy observation data and to
predict the output response probability distribution for an arbitrary input signal is first
proposed. Next, a dynamical state estimation method of only a specific signal embedded in the
additional noise (i.e., background noise) with random fluctuation of non-Gaussian type is
theoretically derived in a flexible form applicable to the fuzzy observation data. Finally, the
validity and the effectiveness of the proposed method are confirmed experimentally by applying
it to the actual road traffic noise data.

2. STATIC SIGNAL D~ECTION METHOD BASED ON FUZZY OBSERVATION

Let us focus on the input x and the output y of acoustic environmental systems in an
intensity variable under the existence of the external noise v. Based on the additive property of
acoustic intensity, the following linear system model is considered.

y = ax+b+v, (1)
where a and b denote two unknown system parameters, and the statistics of v are known. The
observation data in an acoustic environment are often measured in the quantized level form on a
decibel scale, and sometimes contain the effects of a permissible error of the accuracy in the
measurement. By regarding these quantized level measurement and various error factors as
some kind of fuzziness in the observation from the functional viewpoint, the following
membership function can be introduced.

(2)

where S denotes the fuzzy observation data and the parameter a can be generally regarded as

unknown one. In this section, a method to estimate the system parameters a and b based on the
fuzzy observation S is considered.

By use of the fuzzy probability [6], the probability distribution P(S) of fuzzy data S can be
expressed W.

sP(S) = ~ pS(Y)P(Y)dY,

where K is a constant satisf ying the normalized condition:

~P(S)dS =1, (or ~P(Si)) =1.
1

(3)

(4)

Since the output level Y shows an arbitrary fluctuation form of non-Gaussian type, the
statistical Hermite expansion expression [71 is adopted as the probability density function of Y:
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Wy= <y>, <=<(Y-PY)%An= <L —@WY-$)>> (5)

where <> denotes the averaging operation with respect to the random variables. Hereupon, by
use of a relationship between the cumulant statistics on decibel scale and the moment statistics

on intensity scale [8], the parameters I.Ly, ~,&(n=WinJW5) ~begivenby
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(M= 10/InlO). (6)

Furthermore, from Eq.( 1), the following relationship is easily derived:
r!

, ai -i>ti 4-%.wr>= i+?= i !j!(r-i-j). (7)

Substituting E.q.(2) and E@.(5)-(7) into Eq.(3), and considering the orthonormal condition of
Hermite polynomial [71:
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the probability distribution P(S) is expressed as follows:
a)

p(s) = ~ > Jn(S; a, a, b, <xJ>, ~J>), Q=l, 2, ...)
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Let us assume that S takes the finite numbers of levels S1, S2, . ... SL, and Si denotes a fuzzy

data about Si dB around the true state value. Therefore, by selecting artificially several values

of Si with the same numbers as unknown parameters, the simultaneous equations in the same

form as in Eq.(9) can be written, as follows:
co

P(si) = ~ ~ Jn(si; a, a, b, <xJ>, -J>), (i=l, 2, 3) (11)

n=o
As a method of solving Eq.( 11), the well-known Newton Raphason method can be adopted.

By use of the estimates on the parameters of acoustic environmental systems, the output
probability distribution for the system with an arbitrary input signal in an ideal case without the
external noise and fuzziness can be pn#icted as follows:

A h+b
y= lologlol ~-lz , (12)

where $i and $ denote the estim~”ks of a and b. Based on the time series data of ?, the
cumulative probability distribution connected with an evaluation index LX can be directly

constructed by use of the computer.

3. DYNAMIC SIGNAL DETECTION METHOD BASED ON FUZZY OBSERVATION

A sound environmental system exhibiting a non-Gaussian distribution is considered. Let
the specific signal intensity at a discrete time k be x(k), and express the dynamical model for the
specific signal as:

x(k+l) = Fx(k) + Gu(k), (13)
where u(k) denotes the random input with known statistics, and x(k) and u(k) are uncorrelated
each other. Furthermore, F and G are known system parameters.

The observed data in the actual sound environment inevitably contain some kind of
fuzziness due to the quantized error in the digitization of observation data and several error
factors in the measurement. Therefore, in addition to an avoidable external noise, the effects of
the fuzziness contained in the observed data have to be first considered in order to derive a state
estimation method for the specific signal. The observation equation can be formulated by
dividing it into two types of operation from a functional viewpoint

i) The additive property of acoustic intensity, under the existence of external noise:
y(k) = x(k)+ v(k). (14)

We assume that the statistics of the external noise intensity v(k) are known in advance.
ii) The fuzzy observation s(k) obtained from y(k): The fuzziness of s(k) is characterized by

the membership function p~~)( y(k)), especiall y by reflecting it to y(k) on an intensity scale, not

to the directly observed data.
In order to derive an estimation algorithm for a specific signal x(k), based on the successive

observations of fuzzy data s(k), we focus our attention on Bayes’ theorem:
P(x(k),s(k)lS(k- 1))

P(x(k)lS(k)) = p(s(k),s(k-~)) , (15)
where S(k)(=(s( 1), s(2), .... s(k))) is a set ‘of observation data up to a time k. After applying
the fuzzy probability [6] to the right side of Eq.( 15), expanding it in a general form of the
statistical orthonormal expansion series, the conditional probability density function
P(x(k)lS(k)) can be expressed as:



s~,@)(y(k))p(x(k)>y(k)ls(k-l))dy(k)
P(x(k)lS(k)) =

s
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Awfi~@)(y(k))PO(y(k)E(k- l))I#~)(Y(k))dY(k)

with

Am= <~$(x(k))~~)(y(k))l S(k- l)>, (17)

The functions ~~)(x(k)) and ~~)(y(k)) are the orthonormal polynomials of degrees m and n

with weighting functions PO(x(k)lS(k- 1)) and PO(y(k)lS(k- l)), which can be artificially chosen

as the probability density functions describing the dominant parts of P(x(k)lS(k- 1)) and
P(y(k)lS(k-1)) from the viewpoint of convergence of infinite expansion series. Based on

q.( 16), and using the orthonormal relationship of the function ~$(x(k)), the recurrence
algorithm for estimating an arbitrary Nth order polynomial type function fflx(k)) of the specific

signal can be derived as follows:

j i AmcNmfi~~)(y(k))po(y(k)ls(k-l))~~)(y(k))dy(k)
?N(x(k))=d~x(k)) lS(k)>=mda , (18)

m

; Ahfi,@)(y(k))po(y(k)ls(k-l))w:)(y(k))dy(k)

where cNm is the expansion coefficient determined by the equidity

fN(x(k)) = ; cNm~~)(x(k)).
m=O

(19)

In order to make the general theory for estimation algorithm more concrete, the well-known
Gaussian distribution is adopted as PO(x(k)l S(k- 1)) and PO(y(k)l S(k- l)), because this

probability density function is the most standard one, as follows:

PO(x(k)lS(k-l)) = N(x(k); x*(k), r’(k)), PO(y(k)lS(k-l)) = N(y(k); y*(k), Q(k)) (20)

with

N(x; p, U2)= 1 exp{ (X-p)z}
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x*(k) =@k)lS(k- l)>, r(k)=<(x(k)-x*( k))21S(k- l)>, y*(k)=@k)lS(k-l) >=x*(k)~v(k)>,

Q(k) = <(y(k) -y*(k))21S(k-1)> = r(k) + <(v(k) - <v(k)>)% (21)
Then, the orthonormal functions with two weighting probability density functions in Eq.(20)
can be given in the following Herrnite polynomials [71:

~~)(x(k)) = — ‘(k) - ‘“(k)), ~~)(y(k)) = ~~(y(k)
- y*(k),
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As the membership function p~&)(y(k)), the following function is adopted.

~,c)wki=exP{- p(Y(k) - S(k))2}j (23)



where P (>0) is a parameter. Through the similar calculation process to the derivation in

Sect.2, the estimation algorithm of the specific signal can be given by
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where the fuzzy data s(k) are reflected in K1, K2 and K3 as:
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Finally, by considering Eq.( 13), the prediction step which is essential to
recurrence estimation can be given by

x*(k+ 1) = F<x(k)lS(k)~G<u(k)>,

r(k+l) = F2<(x(k)-=(k)lS(k)>)21 S(k)~G2 <(u(k) -a(k)>)%, ..... .

By replacing k with k+l, the recurrence estimation can be achieved.

(24)
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perform the

(27)

4. APPLICATION TO ROAD TRAFFIC NOISE ENVIRONMENT

In order to examine the practical usefulness of the proposed signal detection method based
on the fuzzy observation, the proposed method is applied to the actual sound environmental
data. First, the system identification method in Sect. 2 is applied to acoustic data observed
indoors and outdoors for a house. Under the actual situation contaminated by a background
noise (road traffic noise), the fuzzy data quantized roughly with 5 dB width on the output
fluctuation of the acoustic environmental system are sampled. Based on the 500 data, the
system parameters are estimated. The 200 sampled data following the data used for the
estimation of parameters are adopted for predicting the output response probability distribution
form. The mean level of the background noise is daringly set in advance to be equal to the
mean value of the system output.

Figure 1 shows the prediction result for the output probability distribution. The observed
values contaminated by the background noise and affected by the fuzziness with rough 5dB
width are shown in white circles (0), and the experimentally sampled points on the output
probability distribution without considering the effects of the background noise and the
fuzziness are shown in black circles (.). Furthermore, a solid curve (— ) shows the
theoretical y predicted output probability distribution in the case of considering the expansion
coefficients A3 and A4 in Eq.(5) when the system parameters are estimated, and the dotted

curve (----) shows the predicted result when the system parameters are estimated by considering



only the first term (i.e., Gaussian
distribution) in Eq. (5). By
considering the expansion terms
A3 and A4 into consideration, the

theoretically predicted curve
approaches to the experimentally
sampled values for the output
probability distribution.

Furthermore, the proposed
method is compared with the
standard method based on the least
squares error criterion under the
situation without the background
noise, after assuming the linear
system model on decibel scale.
Figure 2 shows the comparison
between the theoretically predicted
curves and the experimentally
sampled points for the output
probability distribution. The
theoretically predicted curves based
on the proposed method show
better agreement with the
experimentally sampled values than
the result using the usual least
squares error criterion.

Next, in order to examine the
practical usefulness of the
proposed digital filter based on the
fuzzy observation in Sect.3, the
proposed method is applied to the
actual sound environmental data.
The road traffic noise is adopted as
an example of a specific signal
with a complex fluctuation form.
Applying the proposed estimation
method to actually observed data
contaminated by background noise
and quantized roughly with 2 dB
width, the fluctuation wave form
of the specific signal is estimated.
Figure 3 shows the estimation
result of the fluctuation wave form
of the specific signal in the case
when the proposed method is
applied. Hereupon, the horizontal
axis shows the discrete time k, of
the estimation process, and the
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vertical axis expresses the sound level. For comparison, the estimation result calculated using
the usual method without considering any membership function is also shown in this figure.
Since Kalman’s filtering theory is widely used in the field of stochastic system [1, 2], this
method is also applied to the fuzzy observation data as a trial. The result estimated by the
proposed method considering the membership function shows good agreement with the true
values. On the other hand, there are great discrepancies between the estimates based on the
standard type dynamical estimation method (i.e., Kalman filter) without consideration of the
membership function and the true values, particularly in the estimation of the lower level values
of the fluctuation.

5. CONCLUSION

In this paper, based on the observed data containing some fuzziness after contamination by
background noise, new methods for estimating a specific signal have been proposed especially
from two viewpoints of static and dynamic methods. The proposed estimation methods have
been realized by introducing the fuzzy probability into the probability distribution of expansion
series type. The proposed methods have been applied to the actual estimation problems of the
specific sound environment, and these have been experimentally verified that the better results
have certainly been obtained than the results employing usual methods without considering any
membership function.
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