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ABSTRACT
Although boundary element methods have been used for three decades for the numerical solution
of acoustic problems, the issue of convergence is not well known among acoustic engineers. In
this paper the concept of convergence is introduced in an intuitive and empirical style. The
convergence of an axisymmetric boundary element formulation is studied using linear, quadratic
or superparametric elements. It is demonstrated that the rate of convergence of these formulations
is reduced for calculations involving bodies with edges (geometric singularities). Two methods for
improving the rate of convergence for these cases are suggested and examined.

1. INTRODUCTION
During the last three decades boundary element methods have evolved to become one of the
standard numerical methods for solving acoustic problems. Several products are now commercially
available for the calculation of acoustic problems using numerical techniques including the
boundary element method. Hence, a typical user of the boundary element method is now an
engineer, who is not necessarily acquainted with all details of the boundary element method and
code. One of the important topics for the end-user is the question of the accuracy of the resulting
solution. It is well accepted that using a finer division of the mesh (more elements) improves the
accuracy. Likewise, it is well known that the use of advanced interpolation fimctions (shape
functions) also improves accuracy. However, the underlying theory and assumptions of these
results do not seem to be well known. The study of the accuracy of a numerical solution versus
the computational work in terms of computer time is the study of convergence. The formal
analysis of convergence involves advanced functional analysis, and the results of this somewhat
recondite theory do not seem to be well known among acoustic engineers.

In convergence analysis the methods of improving accuracy traditionally are divided into
two groups. In the h-method higher accuracy is obtained by a freer division of the mesh. The
typical element dimension is normally denoted by h, which gives the method its name. The p-
method improves accuracy by using increasingly higher order of the interpolation fimctions. The



order of the interpolation fhnction used, is normally denoted by p giving the method its name (in
this paper m is used in order to avoid conhion with the pressure). If both the mesh is refined and
the order of interpolation functions is increased the method is termed a hp-method. The p-method
requires that shape functions of high order are available in the code, which is often not the case
at present time. Hence, the method that is usually applied is the h-method, i.e. mesh refinement.
The present paper conducts a convergence study of the direct collocation boundary element
method using the h-method. Rather than presenting the rigorous mathematical theory described
e.g. in reference [1], an alternative development is presented, where focus has been put on intuitive
understanding.

2. THE HELMHOLTZ INTEGRAL EQUATION
The direct boundary element method is the numerical solution of the Helmholtz integral

equation. The Helmholtz integral equation relates the pressure p(P) outside a vibrating or
scattering body to the pressure p(Q) on the surface of the body, the surface velocity v(Q) normal
to the body and (if desired) an incoming wave p’(P). The formulation used in this paper is a
restriction of the general three-dimensional integral equation to axisymmetric geometries and
boundary conditions [2] using a transformation in to cylindrical coordinates (r, z, @:

C(P)P(P) = ~~ (p(Q) F ‘(P,Q) + MzoV(Q)~ ‘(~, Q)) ~ + 4~P ‘(P)> (la)

where

J
F ‘(P,Q) = r~ ~2nG(R) d6~, (lb)

and

(lC)

This equation relates the pressure at the point P, p(P), to the pressure p(Q) and the normal
velocity v(Q) on the surface of a closed axisymmetric body described by its generator L. In the
medium p satisfies ~p+#p = O. The time factor eiti has been suppressed. R = I P-Q I is the
distance between P and Q. G(R)=e-ti/R is the free-space Green’s function; k=dc is the
wavenumber, where @is the circular frequency and c is the speed of sound; i is the imaginary unit,
~ is the characteristic impedance of the medium and n is the unit normal to the surface at the point
Q directed away from the body. The quantity C(P) has the value O for P inside B and 4TCfor P
outside 1?. In the case of P on the surface S, C(P) equals the solid angle measured from the
medium (=2n for a smooth surface).

A popular way of bringing equation (1a) to a form suitable for computation is the
collocation technique. The integral on the right-hand of equation (1a) is divided into a sum of
integrals each concerning a segment of the generator Lj$where the indexj = 1,2,.. ,ZVdenotes the
number of a segment of the generator. Within each segment a simple curve (usually linear or
quadratic) is used to describe the geometry, and the acoustic variables are likewise described by
simple fimctions. After these two approximations are made, the geometry of a linear segment can
be described by the coordinates of the starting point and the end point of each segment - for
quadratic interpolation also the midpoint values are needed. The term used for these points are
nodes. Likewise the values of the acoustic variables are now defined by their nodal values. The
term used for a segment after these approximations have been carried out is ‘element’, giving the
method its name. If we assume that the normal velocities are known (this is the usual situation)
we then have a finite number of unknown nodal pressures M.

In the collocation approach the M equations needed to match the M unknowns for finding



a unique solution of the problem are then found by placing the point P in turn at M positions
(collocation points). Normally these positions are chosen to be at the nodes on the surface (the so-
called surface formulation), since the resulting coel%cient matrix becomes dominated by the C(P)
terms in the diagonal, which is desirable from a computational point of view. This leaves the
problem of handling singular integrals, since the Green’s function and its normal derivative become
singular when R tends to zero, i.e. when the integration point Q passes the calculation point Pin
the integral on the right-hand side of equation (1a). However, this problem is well known and is
easily solvable [2]. Alternatively, the calculation point could be placed inside the body, where C(P)
= O (the so-called interior formulation), but this strategy is less desirable since it does not lead to
the desired coefficient matrix with large entries in the diagonal.

Once the problem has been discretized the resulting equations maybe written in matrix
fow

(C-D)p = -ikzoMv - 47cp1 , (2)

where the complex vector p contains the nodal pressures, v contains the nodal normal velocities
and p z contains the pressure of the incident wave at the nodes in the absence of the body. The
matrix C is diagonal; its values cii are the solid angles at node number i. The elements in the
matrices D and M are integrals over the elements of the segments, so that the column number is
related to the segment number and the row number is the calculation point number. M contains
integrals over the Green’s fimction (monopole terms), and D contains integrals over the normal
derivative of Green’s function (dipole terms).

3. CONVERGENCE
In the transition from the integral equation (1) to its numerical counterpart (2) five sources of error
may be identiiled: i) uncertainties in calculating the fimctions F’ and @ in equation (1), ii)
approximations of the boundary, iii) approximations of the acoustic variables, iv) the numerical
integration over each element, v) errors in the solution of the system of equations.

In the following it will be assumed that the error in determining the functions ~ and ~
is negligible. This assumption seems allowable if the singular integrals mentioned in the previous
section are correctly handled. Moreover, it is possible to test the validity of this assumption at a
later stage.

It will also be assumed that the error due to numerical integration is negligible, and it
turns out that this criterion can be used to decide the minimum order of the numerical integration
formula [3]. Numerical experiments have conf~med that for quadratic elements a four point
Gauss-Legendre quadrature formula gives the same accuracy and convergence rate as all higher
order quadrature formulas, whereas a two point Gauss-Legendre quadrature formula destroys the
accuracy and convergence rate in agreement with the theory in reference [3] (the three point
formula has not been used since one of the integration points then coinsides with the singularity).

Finally it will be assumed that the error in solving the system of equations is negligible.
This is more disputable since it is a well-known fact [4] that the system of equations is ill-
conditioned at or near the so-called characteristic frequencies, and that the solution then may be
wrong. However, for the geometries considered here the characteristic frequencies are known in
advance and have been avoided, and it has been found that for all cases the resulting system of
equations is well conditioned. A favorable feature of the surface formulation considered here is
that the condition number of the resulting coefficient matrix tend to a constant as the number of
elements is increased [3], so the set of equations does not become more ill-conditioned in the limit
of h+O as is the case in some other numerical schemes. Furthermore, in reference [3] it was found
that the convergence rate was not destroyed even when very close to the characteristic frequencies



(although the level of error was dramatically increased). Only exactly at a characteristic frequency
(up to six significant digits) the formulation failed to converge. A similar experiment (not shown
here) carried out on the present formulation showed the same behaviour.

Hence, the present work deals with the errors due to the discretization of the geometry
and of the acoustic variables. Initially we consider the error due to the approximation of the
acoustic variables only. The effect of discretizing the geometry is considered later.

Consider the solution of a scattering problem where the body is inftitely hard (i.e. v=O)
and smooth (i.e., C(P)=2n for all collocation points P). Hence, it is assumed that the dipole matrix
is the sum of an exact part D and a part D that contains the error due to the discretization of the
pressure. Equation (2) may now be written as

(c-D-b).(p+p) = p’, (3)

where the tilde denotes the error made by the approximation and the bar denotes the true vectors
or matrices. Likewise, it is assumed that the pressure maybe written as a sum of an exact part and
a resulting error. Note that the right-hand side is given with no errors. Working out the left-hand
side of equation (3) and using (C- D ) p = p’, the equation

(c-D)p=D(p+p) (4)

is found. If we assume that making the mesh freer reduces the error (i.e., if we assume that the
method converges, which is proven in reference [1]), then ~ will become much smaller than p as
M+w, and equation (4) then reduces to

(c-D)p=Dp (5)

Note that this analysis concerns the effect of discretization of the acoustic variables only - the
discretization with respect to the geometry is treated later in this paper (and theoretically in
references [1,3]). Suppose that the object is divided into linear or quadratic elements of the same
size. For convenience of the following analysis each element is transformed into a standard interval
[O;h]. (In an actual implementation the parent element interval is normally [-1; 1], but if this interval
is used the analysis below would then be a bit more tedious and give the same result.) The
elements of D= D +D can then be written in the following form

J’ N&)FB(P,Q,xD.l(x) dx,
o

(6)

where .J(x) is the Jacobean of the transformation, and the N.’s are the shape functions. If it is
assumed that the pressure and its derivatives are sufficiently smooth, the exact value of the
pressure pin an element will be given as

(7)

according to Taylor’s formula. Here XOis an unknown point between O and h. Hence the elements
in D are of the form

(8)

By the use of partial integration it can now be seen that in the limit of small element length h the
elements in D are proportional to hm+l.Note that the dimension M of D is inversely proportional
to h. Hence, each element in the vector O ~ is the sum of M= l/h terms of magnitude h“+’,and



therefore of the magnitude h“, since the true solution ~ is slowly varying in the limit of small h.
Now, consider the leit-hand side of equation (5). The elements in a single row of the matrix D are
related to a surface integral over the object, since each element in D ~ = C(P) plrU,(P) is the value
of the surface integral of the true pressure and the derivative of Green’s function with respect to
the collocation point P. This integral is in the limit a constant (the solid angle 2n times the true
pressure at P), and therefore each element in the matrix D is of magnitude h (i.e., the magnitude
of each element decreases proportionally to the length of the integration interval, which seems
reasonable). Now, suppose that the elements in ~ are of order ml (i.e., of magnitude hmz). Then
each elenxmt of D ~ must also be of magnitude ml since each element of D F is a sum of M= I/h

hm~+lLikewise C p =27rfi is of magnitude ml. Hence, the rigth-hand sideterms of magnitude hhml= .
of equation (9) is of the same magnitude as ~, ml, and since the left-hand side of equation (5) is
of magnitude m, rnl=rn is found.

For linear shape functions the expected convergence rate m=2 is found, and for quadratic
shapefunctions the expected convergence rate is m=3, which is consistent with the findings of
others [1,3].

3.1. FIRSTTESTCASE:SCATT’EFUNGBYA RIGIDSPHERE
The scattering of a plane wave by a rigid sphere at kiz=l serves as the first test case. For

this problem an analytical solution is known, so the error made by the BEM formulations may
easily be obtained. Figure 1 shows the errors measured as the ratio between the length of the
residual and the length of the analytical vector as , , , , 1111 I
functions of the number of nodes, M, which is a good

lE+O
~“””1 g

measure of the computational work. The results of lE-1
three different formulations are shown. It is evident

~

that the curves are straight lines in a double logarithmic .
coordinate system, verifying the result of the previous
paragraph that the error is of the form M-m. For the
isoparametric linear formulation which uses a piecewise

~

linear approximation for both the geometry and the ~ 1E-4 r .
pressure, a slope of -2 is found. This corresponds to an w

order of two and is in agreement with the findings of
\.

lE-5 . y
the previous section. For the isopararnetric quadratic .

formulation a slope of about -4 is found. The order of T
four is higher than expected, and is due to symmetry of

lE-6

the formulation canceling third order terms. A similar IE-7
.

effect has been reported for constant elements [3]. The
.
‘. .-

last curve shown represents a superpararnetric formula- IE-8 t“’’’” # 1 1 #1111 1 1
tion using quadratic approximation for the geometry 10 100
but a linear approximation for the pressure. Evidently, Number of nodes
this curve is parallel to the curve representing the ~.lgure 1. Error as a function of the
isoparametric formulation, but the level of error is number of nodes M for diflerent
smaller. Hence, it maybe concluded that the error due boundary element formulations applied
to the discretization of the geometry is of the same to the problem of scattering by a rigid

order as the error due to the discretization of the sphere at ka= ~ Zsoparametric
pressure since the curves otherwise would not be zinearfomula~ion. ----’ ---,

parallel. This observation is consistent with the theoret-
9

superparametric linear/quadratic
ical findings [1,3]. More frequencies have been investi- formulation; . . . . . . . . . isoparametric
gated showing the same qualitative behaviour (and quadratic fomu~ation



hence the results are not shown) - the influence of the 1E-1 , , ,, , , ,
frequency is a vertical displacement of the curves in
Figure 1.

1E-2

L ;Y ;

\

3.2. GEOMETRICSINGULARITIES
\

One of the assumptions in paragraph 3 is that ~
\

\

the sound pressure can be described by its Taylor 1E-3 \
\

expansion so that the order of the formulation is F
\

. 1
determined by the first term of the expansion that is not

lE-4 rlllllll 1 1 1 11#11 1 1
included in the shape functions. If the sound pressure
has not a valid Taylor expansion, this assumption is

10 100
Number of nodes

flawed. Consider the sound field near the 270-degree ~ lgure 2. Error as a function of number
edge of a cylinder. The asymptotic behaviour of the of nodes M for diflerent boundary
pressure near an edge maybe found by the fo~owing element fo~ulation applied to the

loose study (for a more rigid development the reader problem of scattering by a rigid
should refer to Pierce [5 p. 187]). Consider the sound ~YlinderO Isoparametric linear
field near the edge of the cylinder. For the diffraction fomuzation. --- ~ --- -, isoparametric
problem, the term of interest is kr, where r is the dis- quadratic f~mulation
tance from the edge. Now, for any finite fi-equency kr
tends to zero when r tends to zero, but since the diffraction problem is governed by kr itis
mathematically legitimate to keep r constant and let k tend to zero instead, and still draw the same
conclusions from the approxirnative study. Hence, in the limit of r<<l/k Laplace’s equation may
be used. For Laplace’s equation, traditionally used in the limit of small k, it is well known that an
edge of angle 3Tc/2produces an r-1’3behaviour of the flow velocity at the edge - the general rule
is that an angle a produces an r“’a-lbehaviour of the flow velocity [6, p.69]. Hence, the particle
velocity tends to infinity as r tends to zero. The well-known r-in behaviour of the particle velocity
near the edge of a thin screen [5 p,505,7-8] may also be explained in this way. Hence the pressure
near the edge of the cylinder shows an ~ behaviour that is taken into account neither by the linear
nor the quadratic formulation and therefore becomes the limiting factor on the rate of conver-
gence. This is illustrated in Figure 2, which shows the errors of the isoparametric linear and
quadratic formulations as functions of the number of nodes. In the lack of an analytical solution
a very fine meshed BEM solution has been used as the true solution, for which it has been ensured
that the error is far below the level of errors shown in Figure 2. It can be seen that both
formulations now have the reduced slope of about -1.2, which is far from the values found for the
sphere. The accuracy and the rate of convergence are clearly reduced due to the presence of the
singularity.

3.3. SINGULARSHAPEFUNCTIONS
The most obvious way of handling the singularity found for the problem of scattering by

a rigid cylinder is to use a mesh which is graded towards the singularity. However, this leads to
additional computational work. An alternative is to model the singularity by the shape fimctions,
i.e. to use ‘singular’ shape fimctions near the singularity and regular shape fi.mction where the
solution is smooth. Regular linear shape functions are developed fi-om the set {1,x} so the
‘singular’ shape functions designed to handle the ~3 singularity must be developed from the set
{lY}. Hence the approximation of the pressure in x~[-1,1] using singular shape functions tig
at a siruwdaritv at x=+1 is:

p(x) = 2-2’3(1-x)2’3p_1 +(1 -2-23(1 -X)z’q)p+, (9)
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Figure 3. Error as a function of number of nodes M for different boundary
element formulation applied to the problem of scattering by a rigid
cylinder. (a) Isoparametric linear formulation; --------,
specialized linear for&lation. (b) Isoparametric quadratic
formulation; --------, isoparametric quadratic formulation with the
generalized quarter point formulation.

Analogous shape fimctions can by found that models the singularity in x=-1.
Figure 3(a) shows the error of the original linear formulation and the improved

formulation as a timction of the number of nodes. For rough meshes (i.e. meshes using few nodes)
the original order of two of the linear formulation is restored, but for fine meshes the slope is
gradually reduced to -1.2. This reduction of the slope for finer meshes is due to the fact that as the
mesh is refined the element next to the singular element gets close to the singularity and exhibits
singular behaviour. It should be noted that the accuracy at the stage when the improved
formulation reduces its slope is sufhcient for most practical purposes

3.4 GENERAUZEDQUARTERPOINTTECHNIQUE
In mechanics singular elements have been used to model the rl’2behaviour of the stress

field near a crack. For quadratic elements it was found that there was no need to design special
shape fimctions in order to model this singularity. If the mid-element node of a quadratic element
was displaced to its quarter point position, the element exactly modelled the desired rln behaviour.
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0.0
0.0 0.5 1.0
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,
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0.0 0.5 1.0
r

Figure 4. Modelling of the ?’3function (a) using normal isoparametric
quadratic elements; (b) using the generalized quarter point formulation.
The placement of the mid-element node is indicated with a bold dot on
the r-axis.



The acoustic equivalent of the crack is the thin screen, and Wu and Wan [8] have adopted the
quarter point technique to these problems. They found that the accuracy was considerably
improved when using the quarter point technique.

The idea that now arises is a generalization of the quarter point technique. By trial and
error the mid-element node of an isoparametric quadratic element has been moved towards the
position of the singularity of the ~ function, and it was found that at a distance of 0.275 times
the element length horn the singularity the ~ fimction was well modelled. Figure 4(a) shows how
the ~’3 fi.mction is modelled with a normal quadratic element, and Figure 4(b) shows how the
function is modelled using the generalized quarter point technique. It is evident that the function
is not modelled exactly using this approach as it is the case for the square root singularity and the
quarter point technique, but the modelling is still very good. The main benefit of this formulation
is that the coding of special singular elements into a BEM program is avoided - the technique can
readily be used with existing codes. Figure 3(b) shows the error of the original quadratic
formulation compared to the error of the generalized quarter point formulation as functions of the
number of nodes. Initially, a slope of about -3 is found, but for freer meshes the slope decreases
to the value -1.2 of the original formulation. Once again the problem is that the elements next to
the element containing the singularity exhibit nearly singular behaviour for fine meshes.

4. CONCLUSIONS
This paper examines convergence of boundary element formulations in an intuitive and

empirical manner. Convergence results are found for an axisymmetric formulation using linear and
quadratic shape functions, and test cases confirm the findings.

It is found that bodies with edges give rise to geometric singularities that reduce the rate
of convergence of the formulations. Two methods are presented to overcome this difficulty. One
of these applies specialized shape functions to deal with the geometric singularity, whereas the
other models the singularity by a displacement of the mid-element node in a quadratic element.
The latter approach may readily be used with existing codes, and has been named the generalized
quarter point technique. These two specialized formulations improve the accuracy considerably
and restore a high order of convergence for the rough meshes that are usually applied for
engineering purposes.
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