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Abstract
Longitudinal and lateral oscillations in a catcmary-vertical hoisting cable system

are investigated. The main sources of external excitation in the system are taken into
consideration, namely a load due to the winding cycle acceleration/deceleration profile,
and a periodic excitation due to the coiling mechanism applied at the winder drum sur-
face. Due to the time-varying length of the vertical cable the natural frequencies and
mode shapes of the system vary slowly with time. The syst,em is therefore nonstation-
ary, and its response is qualitatively different from the response of t,he corresponding
stationary parameter system. A mathematical model describing the lateral response
of the catenary, and the coupled longitudinal response of the vertical rope, is derived.
The non-linear partial-differential equations of mot,ion are discretised by writing the
defections in terms of the linear, free-vibration modes. A non-linear set of ordinary-
differential equations with slowly varying coefficients results. The dynamic response of
a model example is simulated numerically. The simulation predict,s strong modal inter-
actions during a passage through the primary and internal resonances of the system.

1. INTRODUCTION. Hoisting cables, used to carry payloads in inclined and
vertical transport systems, are susceptible to vibration which induce dynamic stresses
and reduce the useful life of the cables. A common arrangement in industrial hoisting
systems comprises a driving winder drum, a steel wire cable, a sheave mounted in head-
gear, vertical shaft, and a conveyance. The cable passes from the drum over the sheave,
forming the horizontal or inclined catenary, to the conveyance in the shaft, forming
the vertical rope hanging below the headsheave. Major types of vibration occurring in
the hoisting cable systems are classified as longitudinal and lateral vibrations. These
vibrations are caused by various sources of excitation. The longitudinal transient, re-
sponse is caused by the winding cycle acceleration/deceleration profile. The primary
source of stationary periodic excitation during the constant, velocity winding phase, for



both t,he longitudinal and thelateralresponse, is formed by a mechanism applied on
the winder drum surface in order to achieve a uniform coiling pattern of the cable. The
longitudinal vibrations are usually dominant in the vertical rope response, while the lat,-
eral vibrations affect mainly the catenary cable. These vibrations excite one another,
as a nonlinear coupling exists in the system. Furthermore, the system parameters are
changing during the winding cycle due to the time-varying length of the vertical rope,
and the natural frequencies and vibration mode shapes vary with time.

The dynamics of hoisting cable systems attracted considerable attention. Inves-
tigations into the dynamic response of these systems include the studies reported in
references [1]- [5]. In the present,paper the coupled lateral-longitudinal oscillations in
the hoisting cable system are studied. The classical moving frame approach is used to
develop the nonlinear mathematical model representing oscillations in a slowly varying
domain. The dynamic response of a model mine hoist, system is analyzed through a
numerical simulation. A passage through the primary resonances of the system which
occur during the winding cycle are evident in t,hesimulated response, and strong modal
interactions exist in the system. It is shown that the conditions for the internal reso-
nance arise during the up-wind, promoting further energy exchanges among the modes.

2. EQUATIONS OF MOTION. A model of the hoisting cable system is
represented in FIG. 1. In this model, the cable is divided into a horizontal catenary of
length OC = L, passing over a sheave of radius R, and of mass moment, of inertia 1,
and into a vertical rope wit,h a mass Jl, representing the cable payload, attached to
its bottom end. The end 01 of the cable is moving with a prescribed winding velocity
V(t) due to the cable being coiled onto a rotating cylindrical drum, so that, the ent,ire
system translates axially, with the mass A4 being constrained in a lateral direction.
The section 1= 001 represents a slowly varying length of this part, of the cable that, is
already coiled onto the winder drum. The cable has a constant effective cross-sectional
area A, a constant mass per unit length m, and effective Young’s modulus E.

In order to describe the oscillations of the cable the classical moving frame approach
is applied, with the catenary treated as a nonlinear taut, string, assuming that, there is
no cable slip on the drum or across the sheave. Two frames of reference are established:
a coordinate syst,emOIEV,Zattached to and moving with the upper end of the cable, and
a stationary inertial system OXYZ. The dynamic deformed position P of an arbitrary
section of the cable during its motion is defined in the inertial frame by the position
vector

(1) R(s, t) = Ro, (t) + R(S) + ~(S, t),

where s denotes Lagrangian (mat,erial) coordinate of Pi, representing the undeformed
position of the cable section, and measured from the origin 01. In this representation
the axial transport motion is treated as essentially an overall rigid body translation, and
the dynamic elastic deformations are referred to the moving frame associated with this
motion. Rol = [– 1,0, 0]~ represents the posit,ion of the origin 01 in the inertial frame,
R = [s, O,0]~ defines the position of P, ~ = [u(s, t), V(S,t), W(S,t)]~ is the dynamic
displacement vector from the reference configuration, with u, v, and w representing the
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FIG.1.Model of the hoisting cable system

longitudinal, in-plane lateral, and out-of-plane lateral motion, respectively. The upper
bar denotes vectors referred to the moving frame. Assuming that there is no lateral
motion in the vertical rope, and denoting the longitudinal dynamic deflection in the
catenary and in the vertical rope as UC(S,t) and Uv(s, t), respectively, the deformed
position vector is defined as

(2)
{

~ = [s+ %(s,t) - l,@,t),w(s,t)]T , 1< s s G,
[S+uv(s, i) - l, O,O)]T, L,< s < L,, }

where & = 1+ L=, and Lo denotes the tot,al length of the cable in the reference configu-
ration. The continuity of deflection across the sheave requires UC(L1,t) = Uv(Ll, t) = U1,
and the dynamic elastic deflection at the vertical cable bottom end is U2= Uv(L., t).

The equations of motion of the system can be derived by adopting the methodology
used by Perkins and Mote [7] in their study of the nonlinear dynamics of traveling
elastic cables. Following this approach, t,he motion of the hoisting cable is defined by
Hamilton’s principle

(3) /(‘2(5JZ– me – mg)d = o,
tl

where El, 11~,and 1$ denote the system kinetic energy, the cable elastic strain energy,
and the system gravitational potential energy, respectively. Representing the strain
measure in the catenary as CC= UC,S+ ~(v; + tf, ), and in the vertical rope as e. =
uV,s7 applying the Hamilton’s principle, neglecting the catenary longitudinal inertia,
accounting for the boundary excitation due to the winder drum coiling mechanism,
defined as Uc(l,t) = U[(t), v(1, t) = q(t), w(1, i) = WJl(t),where W, VI,W1are periodic,



and applying the coordinate transformation

(4) ‘V(s,t) = Z(s,t) + Vl(l – +), W(s, t) = ti(s,t) + W,(l - +),
c c

and also adding distributed damping forces, the catenary lateral motion is described by
the equations

defined over the spatial interval 1 < s < L1, with trivial boundary conditions for u
andtiats= 1,L1. In these equations ( ),. denotes partial differentiation with respect,
to s, the overdot indicates total differentiation with respect to time, and ( ),~ denotes
partial derivatives with respect to time, T; = [M+ nt(Lo – L1)]g represents the slowly
varying mean catenary tension, FCVand F~Wdenote the damping forces, and e represents
spatially uniform catenary strain defined as

Furthermore, treating the sheave and the payload as additional inertial loads, and
adding a damping force represented by FW, the vertical rope is modeled as the following
unrestrained system

(8) pw,tt – EAuv,., = pz – [Msuv,~t~+ EAe(t)]6(s – L1) + Fw,

defined over the spatial interval & < s < LO, with the homogeneous boundary condi-
tions EAuv,~ ls=L,,L.= 0. III this equation MS = ~ denotes the effective m~s of the
sheave, and the mass distribution function is defined as p(s) = m + A4,s6(s – J51)+
Ma(s – J!@).

An equivalent viscous proportional damping is introduced to represent the overall
damping effort in the hoisting cable. In this damping model a distributed damping
force is expressed in terms of a operator which is a linear combination of the stiffness
operator and the mass distribution function. Hence, the lateral damping forces are
given as F~ = –C[ti,t] and Fw = –C[~,t], respectively, with the damping operator
defined as C = –alTj#$ + a2m, where al and az are constant coefficients of damping.
Similarly, the longitudinal damping force is expressed as Fcw = –CU[uv,t], with the
damping operator given as Cti= –plEA~ + p2p, where PI and pz are coefficients of
longitudinal damping.



3. DISCRETE MODEL. The equations of motion (5)-(8) are discretised by
applying the Rayleigh-Ritz procedure. The dynamic response of the system is ap-

proximated by the expansions v = ~;~l @~(s, W(t), ~ = X:’$’I @~(s, i)q~(t), and
Uv = S2’3’ yn(s~ ‘)~7z(t)2 ‘here Pn, %, and ‘~ are generalized coordinat’es~ ‘d ‘~~
and Y. are linear free-oscillation modes of the corresponding undamped stationary sys-
tem. The in-plane and the out-of-plane modes @n, are equivalent to those of a taut,

string, so that @~ = sin[& (S — 1)]. The correspondingnatllralfreq~len~iesare given

as ti. (1) = 2E, where E= ~-. The shape functions Y. are normal longitudinal
modes of the corresponding linear unrestrained system with 1being fixed, and are given
as Yn(s, 1) = cos ~~y(s, 1) — *77~ sin-hty(s~Z)t where % = “*, with c = m ’71. .
representing the longitudinal natural frequency, and y = s – 1– L.. The eigenvallles ~~
are determined from the frequency equation

where Lv = Lo – 1– L..
In this formulation, the catenary strain (7) is expressed as e(t) = Fe(t)++ ~;’;’ Zn+

P. = ~ JL’ @rF.(s, t)ds, and Q. = $JL10,%(s, t)ds.
Also, the following longitudinal equation results

.%+ /J2.&+ G~ZT = –& I$k’;g(@. – EAA,. – $hz) %

(12) –~ X::;g (i2% + G. )– EAiB:~ + M.i2r. + ~ A

‘f# [~:%~;(P: + q:) + F.(t)] + z.(t),

where m: = .& P(s) K2ds, B:. = f;: Pl(s)yr$$ds> G = J:: P(s)yr~ds> D;. =
~~), A.. = J$ pl(s)K~~ds, and Zr(t) = ~zf~~ P(SJ:: p(s)yr~ds, r,, = 7.(%-2 ~

with primes denoting partial derivatives with respect to s.
.

Due to the nonlinear and nonstationary natlue of the system, a complex dynamic
behaviour of the system can be expected during the winding cycle, when certain fre-
quency tuning conditions are achieved. This is demonstrated in the model example

below.
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4. NUMERICAL EXAMPLE AND RESULTS. The equations (10)- (12)
do not easily lend themselves to analytical solution, and the dynamic response of the
syst,em is analyzed through a direct numerical integration. The following parameters,
being an example of a mine hoist, system arrangement, are assumed in the numerical
simulation: M = 17584 kg, 1 = 15200 kg, m = 8.4 kg/m, L. = 74.95 m,, Lo = 2174.95
m, A = 0.001028 m2, E = 1.1 x 1011 N/m2@ R = 2.13 m. The response of this sys-
tem is investigated during the ascending cycle from the depth of 1500 m. The discrete
model nonlinear equations are solved using the MATLAB ode15s variable-order stiff
solver, applied with the default numerical differentiation formulas (NDFs), and with
the relative accuracy and absolute error tolerances both set to the value of 10-6. The
boundary excitation functions are assumed as U1(t) = U. cos W, V6(t) = V. cos Qt, and
W1(t) = W. cos W, respectively. As the cable cross-over occurs twice per drum revolll-
tion, the frequency of the excitation is Q = 2%. The excitation amplitudes, determined

from the geometry of t,he cross-over zone, are given as U. = l?~~ [/--1]

V. = (1 — ~ )d, and W1 = ~, respectively, where d = 0.048 m is the cable diame-
ter, & = 2.14 m is the drum radius, and /3 = 0.2 rad is the cross-over diametrical
arc. The lateral modal damping ratios are assumed as C, = 0.05’ZO,which is of the
order of damping determined by experimental tests carried out by Mankowski [6]. The
longitudinal damping coefficient pl is assumed to be a function of t,he vertical rope
mean tension defined as T“ = [M + m(Lo – s)]g, L1 s s ~ Lo. Following t,he ex-
perimental data report,ed by Savin and Goroshko [1], this coefficient is determined as
p~ = 10-4(0.5+ 23000

3500+0.75x10–6T;/A ). The value of the second longitudinal damping co-
efficient is assumed to be p2 = 0.159, as established by tests performed by Constancon
[4].

The simulation results, obtained for a cycle with the acceleration/deceleration of
0.77 m/s2 applied over the period of 20s, are presented in FIG.2 and 3, where the lat,eral
response at s = 1+ LC/4, the longitudinal response at the sheave and at the conveyance,
as well as the cable tensions are plotted vs. the shaft depth. The respective nominal
winding velocity is V = 15.4 m/s, which result,sin the cross-over frequency $2= 14.39
rad/s. This produces a complex resonance situation at, the depth of approximately
750 m. In this region the excitation frequency is tuned closely to the second lateral
(Q % iJ2) as well as t,o the second longitudinal (Q x OJz)natural frequency, with the
latter being near twice that of the first lateral nat,uralfrequency (wz x 2Q1), promoting
autoparametric interactions between the modes. The dynamic response plots reflect the
resulting resonance oscillations. Significant,in- and out-of-plane lateral motions occur,
and a strong nonlinear interaction between the lateral and longit,lldinal modes can be
noticed. This results in large tension oscillations. The tension ratio across the sheave
reaches the value of 2, and on the other hand drops to the value of 0.5, at the depth of
approximately 500 m, which may result in a frictional slip across the sheave.

5. CONCLUSION. The hoisting cable system comprising a catenary and a
vertical rope forms a complex nonstationary oscillatory system. This is evident, in the
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discrete model equations (10)-(12). III the catenary (lateral) syst,em a quadratic coll-
pling between the lateral and the longitudinal modes exists, and a cubic coupling arises
between the in- and out-of-plane lateral modes. In the vertical rope (longitudinal) sys-
tem a quadratic coupling with the lateral modes results. The lateral system equations
contlain parametric excitation terms. Terms representing the inertial load due to the
axial transport motion, and the cross-over external excitation are present, in both sys-
tems. The natural frequencies Q.(Z) and w.(1) change with time, and a passage through
the primary, parametric, and autoparametric resonances may occur during the wind.

The model example simulation results show that the nonlinear coupling in the sys-
tem promotes significant modal interactions during the passage through the instability
region. High amplitude vibration which induces large oscillations in the cable tension
is predicted. Therefore, an appropriate design methodology, as well as careful winding
strat,egy, are required to ensure that, the regions of excessive nonlinear interactions are
avoided during the normal operating regimes.
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