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ABSTRACT

In this paper, after introducing a fundamental theory for the acuity of arbitrary fluctuating
random waves, and some new trials of evaluating statistically and hierarchically the random
noise and vibration wave forms of arbitrary non-Gaussian type distribution are proposed,
especially by employing the multivariate joint probability density fi.mction of series expansion
type. First, the counting number that two wave curves contact each other in lower and/or
higher order differential forms is estimated and explicit expression of probability distribution
on the instantaneous amplitude, velocity and successive higher order differential type physical
quantities of the actual random waves can be concretely derived. Especially for the stationary
random wave of arbitrary distribution type, a trial toward the statistical evaluation on the
locations of level crossing is considered in more detail as a special case, in close connection
with the above differential type physical state variables. Finally, the effectiveness of the
proposed method has been experimentally confh-rned by applying it to complicated fluctuation
wave forms of the actual road traffic noise wave.

1.INTRODUCTION

As is well-known, the wave form of random noise and vibration appearing in our actual
environment shows usually the variety and the complexity in its fluctuation pattern. Here,
several variates characterizing the states of fluctuating acuity show the statistical property.
Until now, the statistical methods of analyzing and evaluating the above random wave form

1, D Middleton 2), and other many researcherswere studied by S.O.Rice , . 3)>4), from the

viewpoint of signal analysis. However, almost of these methods were linked with the state
variables of lower order statistics of fluctuating random waves, such as those of displacement,
velocity and acceleration in close relation to physical dynamics, and they oflen were
individually discussed. Furthermore, even if any analytical research were found, it was very
often that many of related researches were restricted to the standardized form of Gaussian



process. But, in the actual environment of noise and vibration showing the variety and the
complexity, it is usual that the objective random processes show actually various types of non-
Gaussian property.

From the above viewpoint, in this paper, we have proposed some fundamental theory to
estimate quantitatively the acuity of arbitrzuy fluctuating random waves, and some new trials
of evaluating statistically and hierarchically these fluctuating random noise and vibration
wave forms of non-Gaussian type distribution, especially by employing the multivariate joint
probability density function of series expansion type. Concretely, we have first estimated the
counting number that two random wave curves contact each other in lower and/or higher order
differential forms, and then derived the explicit expression of probability distribution on the
instantaneous amplitude, velocity and successive higher order differential type physical
quantities of the actual random waves. Here, the linear and/or non-linear correlation
information of fluctuating waves have been hierarchically reflected in each expansion
coefficient of probability expression. More concretely, especially for the stationary random
wave of arbitrary distribution type, a trial toward the different type statistical evaluation on the
level crossing has been considered in more detail as a special case, in close connection with
the above differential type physical state variables.

Finally, the practical effectiveness of the proposed method has been experimentally
confirmed too by applying it to complicated fluctuation wave forms of the actual road trafilc
noise observed in the suburb of a large city.

2. THEORETICAL CONSIDERATION

2.1 THE NUMBER OF TIMES CONTACTING BETWEEN TWO SIGNAL WAVES
(the case of contacting with the differential coefficient of order n )

Let us consider the number of times contacting with the differential coefficient of order n
between arbitrary two signal waves. As is well-known, when two continuously curved lines
x = X(t) and x = C(t) contact each other at a time t = r, the mathematical condition of

contact with the differential coefficient of order n can be given by the following expressions:

_ d“
x(r) = c(r), ;X(t) =Kc(t) , ““” , %x(t) -—

,=r dt t=r ,=. ‘t” c(t) t=r’
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: x(t) #—
dt I=, dtn+’c(t) t=r “

(1)

Now, let us evaluate the number of times En(tl, tz ) that the stochastic process X(t), which

is continuous and continuously differentiable for (n+l)-times on t,comes in contact with the
arbitrary type of continuously curved line C(t) on the differential coefllcient of order n in the

time interval ( tl,t2]. Hereupon, let us take notice of the fundamental properties related to

Dirac’s delta function. One of them is that an integral value of 8(x – XO) brings uppon an

increment at every time when x goes once across XO.That is, the objective number of times of

contact E“(t,, tz ) can be directly expressed in the following equation:

. C5(X(”-’) (t) _ C(”-1) t
~ )“dx(n’~t~-C(w‘(t)

“ (ix(t)’“ ‘G! X(”-l)(t)drn) (t) , (2)



where X(t) = dY(t)/dt , X(’) (t)= d’ X(t)/dt’ .

In Eq.(2), especially when n equals to O, two curved lines are of course in contact situation
with the differential coefficient of order O. At this time , EO(t,,t2) shows the number of

crossing between X(r) and C(t) in the time interval ( tl,t2].Furthermore, when n equals to

1 and so these two curves are contacted with the order 1, El (’tl,t2) can show the number of

extremum that X(t) exists on the specific contact level C(t)= <.

2.2 THE NUMBER OF CROSSING ON ANY SET LEVEL (The case of contacting with the
differential coeilicient of order O)

The number of times that X(l) goes across any set level ~ in the time interval ( tl, t2 ] can

be expressed by substituting n=Oand C(t)= < into Eq.(2), as follows:

Eo (tl J t2 ) = J&‘(’’)a(x(t) - +ix(t)

= j:l~(t)ld(x(t)-~)dt . (3)

In Eq.(3), the absolute operation of ~(t) corresponds to count of the crossing with both

positive and negative slopes, the mean number of crossing can be directly found by the

operation of averaging: EIO] for Eq.(3), as follows:

EIEO(t,,t,)] = j: E[l~(t)l od(X(t) - ~)]dt . (4)

Therefore, when N(~, t) is defined as the random number of crossing per unit time on any set

level: <, Eq.(4) can be of course expressed as:

EIEo(tl,t,)] = j: E[N(~,t)]dt , (5)

where -E[N(<, t)] is the mean number of crossing per unit time. Now, if the stochastic process

X(t) can be assumed as an ergodic random process and the joint probability density function

(abbr. p.d.f.) pm (x, i; t) of the instantaneous value X(t) and the first order differential

value: ~(t) at the time t can be introduced, so E[N(ij, t)] can be expressed from Eqs.(4) and

(5), as the following well-known expression:

(6)

Accordingly, the total number of crossing E[N~(t)], after scanning the value of set level ~

within the possible level range of fluctuation, is given from Eq.(6), as follows:

E[N,(t)] = J::E[N(x,t)]dx = ~::~::1 i Ipti(x, i;t)dxdi . (7)

Therefore, the p.d.f. of crossing number P~ (~, t) (where X(t) is across the specific value of

level &) is easily defined as the ratio of the mean number of crossing on the specific value

< to the total number of crossing:

E[N(<, t)] [II‘* x pti (g, x; t)di

‘N ~~~ ‘) = @T(g)] = J+mjj i Ipw(x, X;t)da

–m -m

(8)



2.3 LEVEL CROSSING PROBABILITY FOR ARBITRARY FLUCTUATING

STOCHASTIC FORM

As aforesaid, various types of statistics like mean number of crossing, extremum, etc.,
reflecting the acuity of the arbitrary random wave form, have fi.mdamental relationship to the
complicated condition of contact between the objective wave form and a set level line.
Accordingly, as we can understand from Eq.(8), these statistics and related probability
distribution are to be immediately linked with the joint p.d.f. of each-order differential
coei%cients in the fluctuating wave form. Therefore, in order to evaluate the statistics
universally applicable for the acuity of wave, first, we have to introduce some unified
expression of the joint p.d.f. concerned with each-order differential coefficients especially for
arbitrarily fluctuating random waves.

Now, it is effective to introduce in advance the following statistical orthonormal expansion
type expression for the joint p.d.f. with K-variates:

p(x, ,-q ,““”,XK)=4(X1)P2 (X2) ”””PK(XK)

with An,~,...”
K = (d:)(%)d:)(x2) . . . d:’(%)) J (lo)

where (.) denotes an averaging operation and {f%!~’(x,)} denote the orthonormal

polynomials of degree n, with weighting fi.mction ~ (x, ) in the interval [a, , b, ]. Here,

{P::’(L)}satisfithefollowin~ofihono~alinte~ralcondition:

(11)

where ~~~ is Kronecker’s delta. Moreover, ~ (x, ) taken as the first term of expansion

series is the mainstay of objective distribution and denotes the dominant part of probability
distribution form. In this place, it has to be noticed that random variables xl are defined as

follows xl = d’-lx/dt’-’ (i= 1,2, ““”, K) .

On the other hand, we already know that Eq.(9) can uniformly deal with various types of
fluctuating distribution. For instance, for the usual random distribution fluctuating in the level
interval (– m, + m), the statistical Hermite polynomial expansion type expression (e.g.,

Gram-Charlier A-type series expansion expression is a kind of it.) taking a Gaussian
distribution as the basis of arbitrary distribution can be widely employed. For an arbitrary
random distribution fluctuating only in non-negative level interval [O, + m ) (e.g., the

distribution of envelope amplitude or physical energy), the statistical Laguerre polynomial
expansion type expression taking a Gamma distribution as the basis of arbitrary distribution
can be widely employed. From this point of view, here, let us take the following two points
into consideration:
i ) The above basic distribution P.(x, ) can be selected artificially and commonly for each

~ (x, ) especially from the convenience of series expansion expression.

ii) For practical type stationary random waves fluctuating within positive and/or negative
regions, the differential coefficients of 1-order and more order x, can fluctuate in both of

positive and negative region.
Now, let us consider a stational random wave and adopt the Gaussian distribution

concretely as the above basis ~ (x,). After employing Eqs.(9) and (10) with 2-variates, the



p.d.f. of level crossing in the foregoing section: Eq.(8) can be rewritten as follows:

with J%, = 2 An,.,In, J
nz=0

4.2 = (d:)(x)d:)(x)) ,

I., = ~:: Ix IP2(X)q::) (x)a!i .
J

(12)

(13)

For the stational fluctuating random signal waves of arbitrary non-Gaussian type, not only
the instantaneous amplitude but also each of successive order differential coei%cient x,, are

usually fluctuating in both positive and negative regions within the interval ( – m, + m). For

adopting the well-known Gaussian distribution as the basic distribution P. (x,), the well-

known Herrnite polynomials with a weighting function PO(X,) can be selected= {Pf) (x,)}

and we directly have the following expression:

{ [ 1}{
2

1 g–/’4
m A., 1

&ox ( 1}

~ C-P,PN(g)=
‘Xp – 7 ox,

1+X—— —
A. @ “ ox,

(14)

1 n, =1

o (n2 = odd)

/4=(+ a;,=((x-PJ2), CJ;2=(i’) .
Here, the mean of velocity ( x ) equalstoOinEq.(15) based on the fact that the frequencies of

positive slope and negative slope become in average half and half each other for a stational
random wave of arbitrary type.

3. EXPERIMENTAL CONSIDERRATION

In order to confirm a part of the practical effectiveness of proposed method, let us apply it
to the actual road traffic noise wave which fluctuate on a large scale affected by various type
of environmental factors. Concretely, as an example of experimental data, we employed the
discrete data of road trafllc noise with an A-weighted sound pressure level observed actually
at a suburb of large city. As the sampling time interval of data, four kinds of the following: 0.1,
0.3,0.5 and 1.0 seconds have been employed and the number of data were 5000.



3.1 EVALUATION OF VELOCITY AND CORRELATION INFORMATION

In the special case when confirming the validity of distribution expression of the level
crossing Eq.(14), in advance, we had to evaluate each of the linear and/or non-linear
correlation information ~~,~, included in the expansion coefilcient. It is necessary for the

concrete evaluation of A~,n2to employ both data of the instantaneous level x and its velocity

i of the fluctuating wave form. So, we have executed the differential operation to evaluate
the velocity on the basis of the observed discrete data x, by using the following formula of

Rutledge’s numerical differential:

( )/12i, = X,.2 – 8xz_1+8X,+1– X,+z . (16)

For the evaluation of correlation information An,n,, we have considered about the following

two cases:

(case 1) An,., =o(n2>2) : the case with use of i4~,”2reflecting at least minimum of non-

linear correlation information.

(case 2) zl~,~,=o(n2>4) : the case with use of zl~,~, reflecting more information than in

case 1.

3.2 EXPERIMENTAL RESULTS

In the stochastic analysis of sound and vibration, the cumulative distribution function(abbr.
c.d.f.) that immediately concerned with the statistics like a mean, variance, (1OO-xOA)
percentile level LX , and others, becomes often more important than the probability density

function expression. Therefore, the c.d.f. Q~ (Y) of the level crossing has been derived from

Eq.(14), as follows:

Figure 1 shows a comparison between the theoretically estimated curves by using proposed
method and the experimentally sampled points in the expression form of c.d.f. for case 1 with
every 0.3 second sampling. Here, in this figure, “Instantaneous level” denotes the c.d.f. of
instantaneous sound pressure level, “the 1st term” denotes the first term of Eq.(1 7), and “the
n-th approx.” denotes the sum up to the n-th expansion term of it, and the same in the
succeeding Figures And Table. Figure 2 shows the difference between the theoretical
curveslexperimental points and the level distribution curve of original wave.

The difference denotes a deviation from the level distribution and indicates the
effectiveness of expansion term. That is, the differences~ (Y) is defined m follows:

&N(Y)= J:m{PN(<) - M<)}w

Here, the distribution of level P(g) have been provided by the following expression:



From Figures 1 and 2, it can be found that the theoretical curves get nearer to the experimental
points according as the expansion term increases. Figures 3 and 4 show the results of
estimating for case 2 corresponding to Figures 1 and 2 respectively. As shown in these figures,
the estimated results by using the proposed method are in good agreement with the
experimental values. And, in comparison the results of case 1 with that of case 2, the latter
shows slightly better effectiveness than the former. From these results, in the proposed method,
even if the distribution is constructed with a few information as in case 1, the effectiveness
can be confkmed enough. Table 1 shows the estimated noise evaluation indexes: (100-xVO)
percentile level LX, with the same sampling interval. In this table, (.) denotes the error of LX

between the experimental value and the theoretical value. From this table, we also cart find
numerically the trend getting nearer to the experimental value according as the expansion term
increases.
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Table 1 Experimental results for LX with every 0.3second sampling (dB(A))

Percentile level: LX L~ L,O L~O Lw Lg~

Experimental value 80.7 79.0 73.0 66.1 63.9

1st term 80.5(-0.2) 78.4(-0.6) 71.2(-1.8) 63.9(-2.2) 61.9(-2.0)
1st approx. 81.5(+0.8) 79.5(+0.5) 72.4(-0.6) 65.3(-0.8) 63.4(-0.5)

Case 1 2nd approx. 81.2(+0.5) 79.2(+0.2) 72.3(-0.7) 65.7(-0.4) 63.9( 0.0)

3rd approx. 80.7(0.0) 78.9(-0.1) 72.6(-0.4) 65.7(-0.4) 63.4(-0.5)
4th approx. 80.7(0.0) 79.0(0.0) 72.6(-0.4) 65.6(-0.5) 63.4(-0.5)
5th approx. 80.6(-0.1) 78.9(-O.1) 72.7(-0.3) 65.6(-0.5) 63.2(-0.7)

1stterm 80.5(-0.2) 78.4(-0.6) 71.2(-1.8) 63.9(-2.2) 61,9(-2.0)
1stapprox. 81.6(+0.9) 79.6(+0.6) 72.5(-0,5) 65.6(-0.5) 63.6(-0.3)

Case2 2nd approx. 81.2(+0.5) 79.3(+0.3) 72.5(-0.5) 66.0(-0.1) 64.2(+0.3)
3rd approx. 80.7(0.0) 79.0(0.0) 72.8(-0.2) 66.0(-0.1) 63.9(0.0)
4th approx. 80.7(0.0) 79.0(0.0) 72.8(-0.2) 66.0(-0.1) 63.8(-O.1)
5th approx. 80.6(-0.1) 79.0(0.0) 72.8(-0.2) 65.9(-0.2) 63.6(-0.3)

4. CONCLUSION

In this paper, we have considered the arbitrarily fluctuating random waves with various type
characteristics of probability distribution form and linear and /or non-linear correlations.
Concretely, we have proposed some new statistical evaluation method by using the universal
expression form for the acuity of those fluctuation waves. Specifically, the series expansion
ty-pe level crossing expansion with variety of distribution form and each sort of correlation
information has been proposed for the arbitrary wave form of the random noise and vibration.
The effectiveness of the proposed method has been experimentally confirmed by applying it to
fluctuation waves of the actual road traffic noise.

Finally, there still remain many problems and future researches to be solved such as: i) to
evaluate successively quantitatively the effect of higher order information for the acuity of
wave in close connection with fluctuating physical quantities like the higher order differential
information besides the level crossing (for example, extremal value (peak and trough), point
of inflection, and/or others), ii) to apply the proposed method to various kinds of data in
many other actual fields, iii) to correlate concretely the proposed theory for the acuity of
wave with the physical response to engineering system (like destructive phenomenon) or the
psychological response to human and to make clear their mutual relationship, and so on.
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