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Abstract - To investigate the pressure pulsation in a resonance tube, a computer program
based on the unsteady compressible Euler equations has been developed. The convective
terms are constructed using a Roe’s approximate Riemann solver and MUSCL for high
accuracy is employed. To limit oscillations near shocks, Koren’s differentiable limiter is
adopted and an explicit two-step Runge-Kutta method is used for time integration. Several
characteristic boundary conditions suggested by Thompson, Watson-Myers and Hwang were
tested and discussed to understand their physical meanings. Through the above tests,
appropriate boundary conditions are selected and applied to simulate the pressure pulsation in
the resonance tube. The calculation results are compared with the experiment by Merkli and
Thomann. The computed amplitude and the period of pressure pulsation showed good
agreement with experiment except peaks. It is believed that the practical engineering problems
concering acoustics can be directly simulated using Euler equations.

1. Introduction

The rapid developments of computational fluid dynamics (CFD) enables us to directly
compute the small acoustic waves without any assumptions and have brought out a new
research area so called Computational Aero-Acoustics (CAA). Recently CAA has been
intensively studied for the practical applications because of limitations of simple linear wave
equation. Although there are many difficult problems concerning with numerical accuracy,
computation time, and boundary conditions, we believe that CAA can provide us valuable
information. This justifies continuous CAA studies in spite of many drawbacks.

As mentioned before, one of important issues in CAA is a boundary condition treatment.
The characteristic boundary condition assumes locally 1-Dimensional and accounts for the



direction of wave propagation by eigen values and is treated using calculation variables under
proper physical conditions, i.e. nonreflecting, sound source and so on. There are several
boundary conitions; Thompson[l ]’s nonreflecting boundary condition(NRBC), full reflective
boundary conditions(FRBC), Hwang[2]’s transparent acoustic source condition(TAS),
Watson-Myers[3]’s acoustic source condition excited by pressure(WMP), Watson-Myers’s
acoustic source condition excited by velocity(WMU). Several boundary conditions based on
the theory of characteristics will be investigated and their physical meanings will be
discussed in this study. Using the two-dimensional compressible Euler equation, direct
numerical simulation for acoustic problems will be carried out. After basic study, numerical
simulation of a resonance tube was performed using the characteristic boundary conditions.
To verify the present computations, the calculation result was compared with the those of
Merkli and Thomann[4].

2. Governing Equations

The 2D axisymmetric compressible Euler equations are written as follows [5];

~+~+~+ati=O (1)
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where Q= [p,pu,pv,e]’, E = [pu,pu’ + p,puv,u(e +P)]’, F = [pv,puv,pv2 +p,v(e +p)~
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if a=O : 2D planar, a=l : axisymmetric
The governing equation can be transformed from physical space to computational domain
using chain rule and the following relations:

r=t, <=; (t, x,y), q=q(f, x,y)
Thus the governing equations in the computational space areas following:

3. Numerical Methods

Time integration of Eq.(3) is
method.
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step Runge-Kutta
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The above time integration method is 2“d order accurate. Because the convective terms in
Eq.(3) significantly affect the accuracy and the stability of numerical calculation, special
attention must be paid. In this study, the numerical flux are constructed using the method
known as Roe’s approximate Riemann solver[6].

~,+,,,S+[i(Q,)+i(QR)+ 2+.2~,+,,2fJJ+,,2]
(5)

It should be noted that since Eq. (5) is just first order accurate, excessive dissipation errors
may smear all the small acoustic waves. Thus some kind of accuracy enhancing methods
must be introduced. In this study, MUSCL(Monotone Upwind Schemes for Conservation
Laws) introduced by Vanleer[7] is employed and to prevent oscillations near discontinuities



such as a shock, Koren’s differentiable limiter[8] is introduced to insure TVD property. The
formulas used in this study are following:
MUSCL :
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Limiter:
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The numerical flux in Eq. (5) is 2ndorder accurate if k=-1 and 3rdorder accurate for k=l/3
in Eq. (6). In this study, k was 1/3. The constants in Eq. (7) is a very small number to keep
from dividing by zero and 104 used.

4. Boundary conditions

Before the presentation of the calculation results, it is important to understanding the
physical meaning of various characteristic boundary conditions; nonreflecting boundary
condition, full reflective boundary conditions, transparent acoustic source condition, acoustic
source condition excited by pressure, acoustic source condition excited by velocity. In this
section, formula of these five boundary conditions will be described and discussed.
Assume that flow at the boundary is one-dimensional then lD characteristic equation is
derived from Eq.(3) as following:

dw+i~=o (8)
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where X? = PWV, Q : conservative variable, Q : Characteristic variable. Variations of
characteristic variables are defined as following:
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where U is contravariant velocity.

4-1. Nonreflecting boundary condition

This boundary condition condition was suggested to realize that the outgoing waves are
reflected back into domain without phase and amplitude changes. The nonreflective condition

(lo)

by Thompson[l ]can be expressed by dividing the characteristic equation as in Eq.
setting the eigenvalues corresponding to incoming waves to be zero (Sommerfeld
condition). The mathematical form is

4-2.
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Full reflective boundary conditions
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(10) then
radiation



In contrary to NRBC, this condition was suggested to reflect all the incoming waves at an
infinite impedance solid wall. Therefore, the outgoing waves are reflected back into domain
without phase and amplitude changes. With no normal velocity, isentropic and zero vorticity

conditions, FRBC is derived as following:
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4-3. Transparent acoustic source condition

This is an sound source condition regarding the nonreflective characteristic of the
outgoing wave. Hwang[2] derived this condition and effectively applied to a single expansion
muffler. To estimate the transmission loss of the muffler in his study, TAS was applied at
exciting end and the other end was modelled by NRBC. Using these two conditions, anechoic
terminating condition was satisfied. TAS condition is also derived from the characteristic
equation using isentropic and plane wave relations as following:.
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4-4. Acoustic source condition excited by pressure

This boundary condition is for an acoustic source condition excited by pressure and was
suggested by Watson and Meyer[3] using the characteristic relation. This boundary condition
can describe the strength of acoustic wave by pressure. With isentropic and zero vorticity
assumptions for inflow boundary, WMP having sinusoidal pressure variation
can be derived as following:

4-5. Acoustic source condition excited by velocity

In the case of the resonance tube having piston movement, the excitation
by velocity maybe helpfil. Therefore a normal velocity component is chosen

at the boundary

(14)

force described
as an excitation

source in this boundary condition. This condition is very similar to WMP but major
difference between WMP and WMU is an exciting source pattern. With isentropic and zero
vorticity assumptions for inflow boundary, WMP having sinusoidal velocity variation at the
boundary can be derived as following:

u’ = ssin(m), % = pcu’ –24
(%-%3)

dp- M’%=[f3g!+,4(:-peg)]/pc=.! ~-o
6t=c*drdr

5. Results and discussion

(15)

Before the discussion on a practical application, wave propagation problems with/without
acoustic sound source were intensively studied to understand the physical meaning of various



boundary conditions. To investigate the characteristics of TAS-NRBC and TAS-FRBC, TAS
was given at inlet while NRBC or FRBC was alternatively adopted at outlet. Figure 1 shows
the schematic of tested problems and boundary conditions. The pressure variation at inlet can

be expressed as following;

where nondimensionalized angular velocity( o ) and arnplitude(s ) in Eq. (16) are 0.5 and
0.001, respectively. The converge histories of TAS-NRBC and TAS-FRBC without acoustic
sound source were displayed in Fig. The residuals of TAS-NRBC and TAS-FRBC in Fig. 2
are remarkably decreased over 1200 and 2000 iteration, respectively. The remarkable
decrease of residual in Fig. 2 is closely associated with the wave motion(see Figs. 3 and 4).
The boundary condition which does not generate any reflective wave is of great importance.
In the case of TAS-FRBC, the reflective characteristic of FRBC is distinctly observed as
shown in Fig.4. Note that the double amplitude in Fig. 4 results from the duplication of the
outgoing and reflective wave at the outlet boundary.

To study the effects of sound sources, a problem similar to Fig. 1 was chosen. But the
boundary conditions were changed. TAS was used at inlet while TAS, WMP and WMU
conditions at outlet were alternatively selected.
The pressure variations at inlet and outlet can be described following:

At inlet : same withEq.(16)

At outlet : d,p’ = eocos(am) (17)

where non-dimensionalized angular velocity and amplitude in Eq. (17) are 0.5 and 0.001,
respectively. Figures 5-7 display time histories of acoustic pressure at various locations. The
calculation results at three different locations in Figs. 5-7 show nearly same behavior of the
acoustic wave. However the remarkable differences can be found when the wave generated at
inlet passes the observation point. It should be noticed that the locations of Figs. 5-7
corresponds to inlet, center and outlet, respectively. This means that TAS, WMU and WMP
have different reflective properties. TAS has nonreflective characteristic while WMP and
WMU do generate reflective wave. TAS can be thought as a nonreflective acoustic source
condition[2] while WMP and WMU as a reflective one. The fundamental difference
between WMP and WMU is the excitation method and they satis~ characteristic equation.
Therefore it is desirable to apply an exact boundary condition to simulate acoustic problem
correctly. For example, in the case of a speaker located far away from observation point, TAS
leads to right calculation since the reflections are negligible. In the case of numerical
simulation of a resonance tube having piston moving with small amplitude, WMU is proper
boundary condition because there will be reflective waves and the known excitation source is
not pressure but velocity.

5-4. Resonance tube

One of important practical applications of acoustics is the resonance tube. Figure 8 shows
the schematic of Merkli and Thomann’s experiment[4]. Because the length of the resonance
tube is much larger than the amplitude of the piston, it can be assumed that the motion of



piston is negligible and the effect of the piston is modeled by WMU condition as mentioned
before. Therefore the deforming mesh was not used. Since the opposite tube end is solid wall,
FRBC is used. Furthermore the acoustic wave motion is considered as axisymmetric. The
grid number in this calculation is 51 x 9. Since the piston is oscillated at the resonance
frequency of the tube, the 180 degree phase difference of two pressure signals at the piston
head and the tube end is observed in Fig. 9. Also, we can find that gradual acoustic wave
superposition with time(see 10) increases the pressure gradient thus leads to shock wave. We
could find that the average pressure of the tube increases with time due to the wave reflection.
Ridder and Beddini[9] shifted their results by the amount of mean pressure to compare their
calculation result with the experimental result[4]. To veri@ the present calculation, we
directly compared with the experiment without shift. The present calculation result shows
good agreement except peaks as shown in Fig. 11. Especially, the phase and amplitude show
remarkable good agreement with experiment. It should be noted that the approach method
based on the classical linear theory cannot predict the abrupt pressure increase as shown in
Fig. 11. Therefore we believe that fundamental and realistic approach using nonlinear
governing equations such as Euler or Navier-Stokes equations is possible and helpfi.d.

6. Conclusions

Using the two-dimensional compressible Euler equations, direct numerical simulation on
acoustic problems was carried out. Several boundary conditions based on the theory of
characteristics were investigated to fully understand their physical meanings by successfid
calculations and discussed. We found that TAS has nonreflective characteristic while WMP
and WMU do generate reflective wave. The fimdamental difference between WMP and
WMU is the excitation method and they satis~ characteristic equation. The wave motion in a
resonance tube is modeled and calculated using the characteristic boundary conditions. Also
the results are compared with those of Merldi and Thomann’s experimental result. The
present calculation showed very good agreement with experiment except peaks thus we
believe that this approach is valid.
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Fig. 10 x-t Diagram of Resonance Tube at
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