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The transverse modes generated when a uniform beam is struck between its two supports
are not harmonic. In order to tune the beam so that at least the lowest of these modes are
harmonically related, parabolic arches are cut on the underside of the beams. The actual
dimensions of the undercut are an empirical design determined by tradition, and relate the
subtleties of the sound produced with those favoured by the human ear. The current paper
takes a very general approach to the problem. Finite element analysis is used to determine
the optimal undercut required to tune the beam. However, no assumption is made
regarding the shape of the cut beyond ensuring that material is not added and that the
structure remains a single beam. An optimisation approach is then used to calculate the
profile of the beam to satisfy the prescribed frequencies. The calculated profile depends
on the optimisation criterion specified. The paper presents a variety of profiles for which
the optimization criteria vary from ease of modelling to ease of construction. The results
often do not resemble the traditional cut.

INTRODUCTION

The optimisation of a musical instrument is generally the task of the maker. Historically,
the task has been undertaken using not much more than a sense of touch and sound.
Structures are carved and crafted so that they are playable and respond to excitation with
sounds that please. In many cases this is synonymous with producing overtones of the
fundamental that are harmonically related, although in the case of some instruments, there
are intermediate structures, such as the back plate of a violin, that may require quite
different tunings. Whatever the system, the craft is expressed in much the same way; the
structure is carved roughly at first according to a set pattern and then more finely until the
optimal tuning is obtained. The art of removing material, in the correct amounts and
physical positions, to tune an instrument is often made easier by the existence of tuning



curves that map the response of each of the modes to particular adjustments.

The results of this empirical art have been the subject of numerous studies in musical
acoustics. However such investigations have generally been restricted to confirmation of
existing designs [1]. The aim of our work is to design new profiles, that conform to the
musical expectations using numerical techniques. Whilst the idea is general, in this paper
we have restricted its application to the tuning of idiophones such as marimbas.

For a musically pleasing sound the lowest three transverse modes, generated by striking
the marimba bars, are required to be close to harmonically related [2]. However, a
rectangular wooden beam responds with nonharmonic overtones when struck.
Accordingly, the marimba maker typically carves a parabolic arch on the underside of the
beam. Application of one-dimensional vibrational analysis techniques is sufficient to show
that this results in a significant reduction to the frequency of the fundamental mode with
a lesser and variable effect on the higher modes [3]. However in this paper we don’t wish
to analyse what has already been produced, but rather to design suitable undercuts with no
a-priori assumptions as to the shape of the undercut. This approach allows a wide range
of geometries of the undercut to be explored. Hence, we shall examine a range of

geometries for their suitability and ease of construction.

GENERAL APPROACH

We begin by adopting a suitable theory that can describe the motion with sufficient
accuracy, and by describing the physical characteristics of the structure and the boundary
conditions.

In the case of the marimba we have used the one-dimensional Timoshenko beam theory,
which is the simplest extension of the classical theory that can account for shear
deformation. This results in a fourth-order system of coupled differential equations,
namely
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where k is the shear correction factor, G is the shear modulus, A is the cross-sectional area,
P is the density, f2is the natural frequency, and w and 6 are the displacement and rotation
amplitudes of the beam. A prime denotes a differentiation with respect to x.

The beam is assumed to have a rectangular cross-section with width b and varying height
h(x), so that the sectional properties A and 1 are also functions of x, that is

A(x) ‘bh(X)



The beam is supported by two spring supports positioned at L1 and L1 + L2 as shown in
Figure 1. Hence the length of the overhang is L, and the length of beam between the two
supports is L2.
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Figure 1. Geometry and sign convention

PROBLEM FORMULATION

The goal is to design a beam that responds with specified frequencies. We do this by
defining the function h(x), without reference to the traditional parabolic undercut. Hence,
the geometry of the beam is described by a number of parameters that are the primary
unknowns for the problem. An optimisation procedure is then used to determine the values
of the parameters such that the beam has the desired frequency characteristics and other
specified criteria are satisfied. Therefore, we introduce an optimisation function ~(h),
which is a function of the primary unknowns, and optimise it subject to constraints g(h),
which in this case are the desired natural frequencies together with some manufacturing
constraints. It is worth noting that the choice of optimizing criteria can be fairly arbitrary
and in the following examples we attempt only a local minimisation. Hence, any one
solution may not represent a true global optimal solution. For simplicity, the beam is
assumed to be symmetrical about its midlength point and its width is kept constant.
Clearly a wide range of geometries could be adopted within this general framework.

We shall present four distinct geometries below and discuss their relative merits. In each
case we have restricted the cut section to be the section of the beam between the two spring
supports. As an example, for each shape we shall assume that we are tuning a marimba
bar made from Australian hardwood such that the first three frequencies are 128 Hz, 512
Hz and 1280 Hz. This is a traditional tuning regime for a marimba. The properties of the
timber were assumed to be E = 21 GPa, v= 0.3 and p = 648 kg.m-3. The width of the bar
was 64 mm and its uncut height was 18.9 mm. The lengths of the bar were taken as L1 =
120 mm and L2 = 300 mm. The beam is supported on material with a spring stiffness of
2.88 x 104 N.m-l.



PIECEWISE-CONSTANT HEIGHTS

The beam is discretised into N sections each of constant length, with height hi, i = I....N.
The response of the beam is thus a function of hi. The constraints are the first three natural
frequencies together with restrictions on the value of the heights. For ease of construction
the height variations are restricted so that no material is added and hence a maximum
height hmmis stipulated. Furthermore, to ensure that the beam remains structurally sound,
a minimum height hm,. is also stipulated. Hence, the variables hi are bound within the
range

hti~ < hi < hmm, i=l .....N

A number of optimisation criteria have been explored. As a first choice we required that
the volume of wood removed from the bar be minimised, so that

N

f(hi)=Z(hmm-hi)
i

since the width of the beam and the length of the sections remain constant.

Alternatively, the optimisation criterion can be adapted to generate smooth profiles. This
was achieved by stipulating that the differences between two adjacent heights be
minimised. Hence,

N-1 N-2

flhi)= ~ (hi+, _hi)2+~ ~ (hi+2_hi)2
i=l i=l

where a is a selectable weighting factor. For either optimizing function, the possible
solutions are numerous. Figures 2(a) and 2(b) show an example of each, where N = 6 and
(X= O.5.

Experimental investigations [4] indicated that smoother profiles showed closer agreement
between theory and results. This was attributed to two-dimensional effects that cannot be
accounted for by a one-dimensional beam theory. However, we can attempt to minimise
these effects by choosing smoother variations for the beam profile. A number of such
options are discussed below.

PIECEWISE-LINEAR HEIGHTS

The simplest extension of the previous geometry is to require that there are no jumps in the
profile of the beam. Hence, the beam is again discretised into six sections each of constant
length, however this time the disretisations have linearly varying heights. The optimisation
criteria used was such that there was minimum difference in slope between adjacent
sections. Figure 2(c) shows an example of this discretisation.



SINUSOIDAL FUNCTIONS

Further smoothness of the profile can be generated by introducing more complex
geometries such as piecewise quadratic or cubic functions. However, we have chosen to
use sinusoidal profiles to achieve the same aim. The beam is hence no longer discretised
in appearance, although finite elements are still used to evaluate the response. To provide
a general approximation to the height, we have assumed that the height is a combination
of a linear function plus a truncated sine series. Hence, the height of the beam between
the two supports is written as

where a. are the amplitudes of the sinusoids.

The optimisation criterion used ensured that the curvature of the cut was minimised.
Hence,~ was taken as

where ~ represents the sum of the squared second derivatives. Figure 2(d) depicts an
example of this approach.

EASE OF CONSTRUCTION

Clearly, there is a wide variety of geometries that can be used to describe the shape of the
cut. The process is general and any of the shapes can be optimised to produce solutions.
However, the original problem formulation made the assumption that we are solving a one-
dimensional problem. Sudden jumps in the height of the cut introduce regions of stress
concentration that cannot be fully accounted for by the one-dimensional theory. We have
therefore two ways in which we can minimise these effects. The first is to optimise the cut
so that there is minimal discontinuities and the second is to use a higher order theory. The
latter option is currently under investigation while in this paper we have chosen to avoid
increasing the order of the theory, Hence we have looked to smoother cuts, and so progress
from the relatively easy to construct shape in Figure 2(a) to the smoother, but more difficult
to construct shapes in Figures 2(c) and (d). Eventually we get to the point of asking “What
should the shape be so that the cut is smooth and easy to construct?” Hence the final
geometry.

In this case we construct the beam by drilling holes through the centre of the beam. The
number of holes is specified and the size and distance between the holes are optimised to
give the required tuning regime, with restrictions to ensure ease of construction (no
overlapping holes, minimum and maximum size of hole). A solution is shown in Figure
2(e).
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Figure 2. Predicted profiles for a marimba bar made from Australian hardwood. Note that
in each case the scale for length and height differ by a factor of six. (a) Beam was
discretised into six piecewise-constant heights, volume of wood removed was minimised
(b) Beam was discretised into six piecewise-constant heights, height difference between
two adjacent discretisations was minimised (c) Beam was discretised into six piecewise-
linear heights, slope difference between adjacent heights was minimised (d) Sinusoidal cut
with minimum curvature (e) Beam with circular holes.



CONCLUSION

This paper has discussed the general problem of designing marimba bars for a specified
frequency response using numerical optimisation techniques. The results show that there
are many possible profiles that the bar can be cut to, all of which satisfy the required tuning
regime. Hence, it is not necessary to restrict the profiles to the traditional parabolic cuts.
However, previous experimental work has shown that the one-dimensional theory is less
accurate when the profile has sudden jumps. Hence, it is preferable to use smoother
profiles. The general procedure is nevertheless applicable to all cuts and enables the
instrument maker to choose a shape that is reasonably easy to construct.
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