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ABSTRACT

Finite element techniques were investigated for determination of surface mobility of an
infinite plate excited over a square contact area by a uniform force distribution using the
effective point mobility concept. Ordinary point and transfer mobilities were obtained using
harmonic response analysis in FEM. Then surface mobilities were calculated for different
sizes of square contact area, based upon these ordinary mobilities. The comparison between
the numerical FEM results and theoretical prediction shows that the surface mobility
obtained by both methods generally decreases with increasing area of the square.

1. INTRODUCTION

Classical vibration isolation models are based upon the point-like connection assumption and
corresponding point mobility concept [1]. In practice, the contact area dimension can become
comparable to the governing wavelength and accordingly excitations may have complicated
spatial distribution at higher frequency. Thus, a multi-point connection model may be
employed to determine effective point mobility and corresponding surface mobility [2, 3]. A
theoretical model for the surface mobility of an infinite plate over a circular contact area was
developed by Zhao et al [3, 4]. Similar models were extended for the surface mobility of an
infinite plate excited over a rectangular contact area by Dai and Williamson [5]. This paper
presents an investigation of the prediction of surface mobility of an infinite plate excited over
a square contact area using the finite element method (FEM). This is quite an important step
in this research because the theoretical models can only be used for very simple structures.
Once confirmation of the method is achieved by comparison with analytical models, a FEM
can be applied to more complicated practical structures in order to obtain better
understanding of actual interface conditions between isolators and support structures.



2. SURFACE MOBILITY UNDER UNIFORM FORCE EXCITATION

For a multi-point coupled vibration isolation system the effective point mobility concept may
be used to determine its surface mobility[2, 3]. The effective mobility at one point includes
the contributions of all the other contact points. The point contact assumption requires that
the connection point has dimensions which are only a fraction of the governing wavelength.

Therefore, the effective point mobility M? at point i can be defined as [2]
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where V; is the velocity at connection point i, taking into account the effects of forces at all
the other contact points. M;; is ordinary point or transfer mobility between points i and j. F;
and Fj (i = j =1 to N) are forces at each connection point. This effective mobility concept
together with the concept of complex power can be used to model interface between an
isolator and supporting structure[3,4,5]. The net complex power injected into supporting
structure through surface contact can be determined by
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where F is the total force acting on the contact area and F; = F/N for uniform force excitation.
Hence, the surface mobility can be found as
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For N point connections, NXN mobility measurements may be needed to calculate the
surface mobility. Fortunately, the number of mobility measurements required for determining
a surface mobility can generally be reduced. Firstly, since the system under consideration is
passive and linear, the reciprocity principle is valid and accordingly the mobility matrix will
be symmetric, ie. Mj=M;i. Secondly, for an uniform, conphase force distribution on the
contact area over an infinite plate, the excitation force F; and the point mobility are the same
anywhere on the plate and the transfer mobility between two points is only dependent on the
distance between the excitation and response points. These assumption reduces mobility
measurements considerably.

3. PREDICTION OF ORDINARY MOBILITY BY FEM

The prediction of ordinary point mobility and transfer mobility using FEM is a vital step to
determine the surface mobility and to study the characteristics of area contact of an isolator.
Commercial FE packages normally does not contain an explicit mobility calculation.
However, they can be used under some conditions to calculate point mobility and transfer
mobility. FE harmonic response analysis is an analysis type in which the applied loads vary
sinusoidally with a known amplitude and at a known frequency. The solution obtained is the
steady-state response of the structure to these loads as a function of frequency. The resulting
response spectrum is not a frequency response function. However, the harmonic response
analysis can be used to determine the frequency response function of a structure to a



particular harmonic forcing function, when it is made equivalent to the swept sine
measurements under the condition in which the amplitude of excitation force is set to 1
Newton. Therefore, the frequency response function can be obtained directly from harmonic
velocity response based upon the mobility definition.

Harmonic analysis solves the time-dependent equations of motion for linear structures
undergoing steady-state vibration. Generally, two methods, the direct and modal
superposition methods, can be used to do a harmonic analysis. In the direct approach all
equations are solved simultaneously, ie., all equations are coupled. It is the easiest, but more
expensive in terms of computing time and storage requirements, especially for a large
structure. The modal superposition method uses the natural frequencies and mode shapes of
the structure to compute the response to a sinusoidally varying forcing function. The solution
to the ith modal equation can be obtained using applicable direct method and the complete
solution in geometric coordinates can be obtained by summing modal response in each
modes.

4. MODELLING OF AN INFINITE PLATE

The two types of FE models were employed to investigate the effect of mesh size on the
harmonic response and surface mobility of a plate with physical dimension 1.2m by 2.4m. In
the first model, the plate was modelled using shell elements with uniform meshes
(0.05mx0.05m) as shown in Figure 1. In the second model as shown in Figure 2, a fine mesh
(0.01mx0.01m) was used in the middle region of the plate where the responses are of most
interest. A coarse mesh was used in the outer area in order to keep an appropriate aspect
ratio. In both models, the infinite plate boundary was simulated by adding spring-damper
elements around the boundary of the plate. It is noted that the number of elements per
wavelength is supposed to be greater than 6 in order to characterise the dynamic response of
a structure. For uniform mesh model, the maximum wavelength is 0.3 m, which corresponds
to upper frequency limit of 112Hz. Likewise, the maximum wavelength and upper frequency
limit for non-uniform model are 0.06m and 2670Hz respectively based on inner meshes. The
model medium is assumed to be elastic and homogeneous, with following properties for
aluminium: Young’ s modulus, E=70x10° N/m2, Poisson’ s ratio, p=0.3 and density, p=2700
Kg/m®. The thickness of the plate, h=0.001m. The sinusoidal excitation force was applied at
the centre of the plate with the amplitude of 1 Newton. The frequency range for this
excitation was O to 2048Hz.

Figure 1 FE model of an infinite plate with uniform meshes



Figure 2 FE model of an infinite plate with non-uniform meshes

The surface mobilities were calculated over square contact area with 9 sub-regions
(0.15mx0.15m), 16 sub-regions(0.20mx0.20m) and 25 sub-regions(0.25mx0.25m) as shown

in Figure 3, 4 and 5.
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Figure 4 Square contact area (0.20mx0.20m) with 16 sub-regions
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Figure 5 Square contact area (0.25mx0.25m) with 25 sub-regions




5. NUMERICAL RESULTS
5.1 The FE Model with Uniform Meshes

Original frequency response functions obtained are receptance. These responses were then
converted to mobility. The calculated point mobilities are shown in Figure 6(a) and
calculated transfer mobilities are shown in Figure 6(b), (c), (d), (e), and (f) in the ascending
order of distances between excitation and response (D1=50mm, D2=70.7mm, D3=100mm,
D4=111.8mm, D5= 141.4mm). It can be seen that the amplitude of frequency response
decreased as the distance between the excitation and response point increases. The
oscillation of mobilities at low frequency is probably due to the approximattion of an infinite
plate. Note that calculated point mobility is not constant at all frequencies, compared with
theoretical one (0.031m/sN).
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Figure 6 Calculated point and transfer mobility (uniform mesh model)

Then surface mobility was calculated for the contact areas, based upon the effective mobility
concept as outlined in section 2. Figure 7(a), (b) and (c) shows calculated surface mobility
over square contact areas with 9 sub-regions, 16 sub-regions and 25 sub-regions. A non-
dimensional product kw/2, called Width-Based Helmholtz Number[5], is employed as the
horizontal axis, where k is wavenumber and w/2 is the half-width of the square. These results
can be compared to the analytical prediction of surface mobility for an infinite plate[5], as
shown in Figure 7(d). It can be seen that calculated surface mobility over square contact area
with 9 sub-regions and 16 sub-regions have only one dip, while the analytical prediction of
surface mobility for an “infinite plate” has consecutive dips with the interval of about .
However, the calculated surface mobility over square contact area with 25 sub-regions have
similar dips to analytical solution. The surface mobilities obtained from uniform mesh model
generally decrease with increases of the Helmholtz number and have dips at intervals which
are approximate multiples of © on the Helmholtz number axis. Moreover, the sidelobes of
the surface mobility fall off at rate of 30dB per Helmholtz number of .



5l ) A0 15 A=0 20ms0 20m]
-150
9kwl2
A0 2n| ol
Bl
1§
2 3 4 5 & 7 8 Sek 2 3 4 5 § 7

Figure 7 Predicted surface mobility of uniform mesh model with
(a) 9 sub-regions (FEM) (b) 16 sub-regions (FEM)
(c) 25 sub-regions (FEM) (d) Analytical prediction [5]

5.2 The FE Model with Non-Uniform Mesh

The similar analysis has been done on the FE model with non-uniform mesh. The calculated
point mobilities are shown in Figure 8(a) and calculated transfer mobility are shown in
Figure 8(b), (c), (d), (e), and (f) in the ascending order of distances between excitation and
response point. These mobilities are similar to those from FE model with uniform mesh.
Note that this model gives a better approximation for constant point mobility of an infinite
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Figure 8 Calculated point and transfer mobility (non-uniform mesh model)



The calculated surface mobility for three contact area are shown in Figure 9(a), (b) and (c)
which can be compared to the analytical prediction of surface mobility for an infinite
plate[5], as shown in Figure 9(d). It can be seen that calculated surface mobility over square
contact area with 9 sub-regions, 16 sub-regions and 25 sub-regions all have two dips, which
is consistent with the analytical prediction of surface mobility for an infinite plate. However,
the second dip in the calculated surface mobility over square contact area with 25 sub-
regions has similar position as analytical one.
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Figure 9 Predicted Surface mobility of non-uniform mesh model with

(a) 9 sub-regions (FEM) (b) 16 sub-regions (FEM)
(c) 25 sub-regions (FEM) (d) Analytical prediction [5]
6. CONCLUSIONS

It can be seen that the predicted surface mobility from non-uniform mesh model with 9 and
16 sub-regions are much better than that from uniform mesh model, compared with the
analytical prediction. However, the position of two dips in the surface mobilities for both
models with 25 sub-regions are close to each other and close to the analytical prediction.
This means that the accuracy of numerical results increases as the number of sub-region in
the contact area increase or mesh size in the FE model decreases. Furthermore, the second
sidelobe of predicted surface mobility for non-uniform mesh model is higher than those from
the uniform mesh model and analytical prediction. Generally speaking, the surface mobility
obtained by two FE models decreases with increasing frequency and both results have dips at
intervals which are approximate multiples of ® on the horizontal axis. Moreover, the
sidelobes of the surface mobility fall off at rate of 30dB per Helmholtz Number of «t. This is
in agreement with theoretical prediction and shows that the vibration transmission through
the isolator with larger contact area would be greatly decreased at high frequency.
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