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Abstract

The recent thre~volume history ‘Twentieth Century Physics’ [1] includes my 118
page ‘Chapter 10. Fluid Dynamics’ about a field where the 20th century’s first decade
saw big breakthroughs in the analysis of nonlinear problems for which the physicist’s
standard perturbation methods break down – and which would later be named singu-
lar perturbation problems. Besides the 1904 elucidation of boundary-layer structure by
Prandtl, these included the 1910 elucidation of shock-wave structure in complementary
invest igations by Rayleigh and by Taylor. Subsequent advances in shock wave dynam-
ics brought crucial new discoveries on the structure and propagation of weak shocks,
and also on shock-wave/boundary-layer int eraction, both with major aeronautical im-
plications; along with still harder investigations into the structure and propagation
of strong shock waves such as appear in explosions and implosions and also around
spacecraft recentering the earth’s atmosphere. It may, perhaps, be worth noting that
questions which remain relatively simple for weak waves, like the nature of reflexion
and diffract ion by a solid body, raise formidable and intriguing difficulties for strong
shock waves.

In this introductory paper looking back over a century of shock wave dynamics,
I highlight (i) key analytical approaches for both weak and strong shock waves, (ii)
beautiful and effective optical methods for use in wind tunnels and shock tubes and
(iii) powerful techniques for accurate shock capturing in computational fluid dynamics.



1. INTRODUCTION

A century ago, students of Acoustics and Vibration depended above all on Rayleigh’s

superb treatise ‘The Theory of Sound’ which had just appeared in an expanded second edition

[2]. Yet in section 253 of this great work Rayleigh brilliantly showed how consideration of just
the simplest problem in the nonlinear theory of sound posed an enioma which it was quite

impossible to resolve with the knowledge then available. Existing suggestions for a resolution,

incorporating those discontinuous waves or shock waves which Mach [3] had photo~aphed
around bullets in flight, appeared on Rayleigh’s analysis to contradict fundamental physical

principles; in short, the ‘century of shock wave dynamics’ had not yet begun.

In surveying the dynamics (rather than the whole physics) of shock waves, space may

be saved by concentrating on waves propagated through a perfect gas with constant specific

heats in a ratio ~; for which scientists since Laplace [4] had appreciated how, in any sound
wave, those changes of pressure p and density p whose ratio is the square of the sound speed

c must satisfy the adiabatic relationship
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(Here, subscript zero denotes undisturbed values.) On linear theory sound is propagated at
speed co, whereas on nonlinear theory higher pressures travel at an

c, amounting on a first approximation to
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where u, the gas velocity in the direction of propagation, assumes on

increased sound speed

(2)

a linear approximation

the familiar bracketed form. But this propagation speed (2), relative to a fluid which itself

moves at velocity u, implies an absolute velocity

C+U=+A (3)

of wave travel. (For air, with ~ = 1.4, the excess wave speed is 1.2u, out of which just

one-sixth arises from the increase (2) in c while five-sixths is due to convection of sound at

the air velocity u.)

Although expression (3) for the wave speed is introduced above by crude approximate

arguments, Riemam’s subtle mathematical analysis of 1859 had already proved it to be
absolutely accurate [5] for plane sound waves of any amplitude propagated one-dimensionally

into undisturbed fluid under adiabatic conditions. Briefly, the relationship c = ~+ ~(~ – l)u
is exact; the expressions for pressure and density may be derived from c by equations (1);
and, most important of all, each value of u is propagated at precisely the speed (3).

These conclusions were well known to Rayleigh, who recognised also their sensational
implications. Figure 1 shows these in the case of a single pulse of positive excess pressure,
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Figure 1. The enigmaof nonlinearwavesteepening.

represented as an initial graph (solid line) of fluid velocity u against distance. on a linear
theory of on~dimensional sound waves, each value of u would be propagated at speed co, so

that the shape of the pulse would remain unchanged when plotted (as here) against z – cot.

on the exact nonlinear theory, however, each value of u is propagated at speed ~+ ~(7+l)u;
accordingly, after time t, that value when plotted against x – qjt as in Figure 1 has been

shifted a distance ~(~ + l)ut to the right. Small values of u have hardly moved at all, while

large values have moved much more – allowing them, remarkably, to ‘catch up’ with smaller
values.

These distorted pulse shapes are shown in Figure 1 (broken lines) for a sequence of values

oft until a time has been reached when the pulse shape has a vertical tangent. Pulse shapes

at still later times continue to be predicted by the theory; however, parts of such a shape

are shown in Figure 1 as dotted lines in recognition of the clear impossibility of the fluid

velocity u taking three different values at one and the same point!

A tempting idea for resolving this enigma is to suppose that the solution develops a

discontinuity. Riemann himself noticed that a discontinuity – indicated in Fiewe 1 by a
vertical solid line – could be inserted in place of the dotted line in such a way that total
mass and momentum are conserved, while all continuous parts of the curve (broken lines) still

satisfy exact equations for sound propagation under adiabatic conditions, Rayleigh, however,

objected that this idea not only (i) left unexplained how a discontinuity would arise but also,

still more seriously, (ii) failed to satisfy overall conservation of energy (indeed, the energy

content in dotted parts of the waveform is lost).

Early in the 20th century, however, the enigma was resolved in two independent studies,
published by Rayleigh himself [6] and by the young G.I. Taylor [7] in a single 1910 number

of the Proceedings of the Royal Society. Both studies showed how waveform steepening
(see Figure 1) produces in the midst of the fluid a region with gradients large enough for

diffusion of heat and momentum to become important. It is because the effects of diffusion

(being proportional to gradients) can, if the region of rapid change is thin enough, attain any
required level that they are able to cancel out those effects of excess propagation speed which

tend to produce the unrealistic ‘overturning’ of the waveform represented by the dotted curve
in Figure 1. Instead, there is formed something close to the discontinuous solution shown
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Figure 2. Distributionof velocity u insidea shockwaveof Taylor thicknessh.

as a solid vertical line; where, however, the discontinuity possesses a definite thickness h
(’the Taylor thickness’) and an associated internal structure (Figure 2) which allow those

‘overturning’ and ‘diffusion’ effects to be in precise balance.

While countering Rayleigh’s objection (i) by explaining how this nearly discontinuous
wave (the shock wave) arises, the above indication of important diffusion effects within it

also demolishes the idea that the process is adiabatic. On the contrary, the fluid traversed by
a shock wave experiences (from conduction of heat and from viscous dissipation) a departure

from adiabatic conditions; which, in accordance with the second law of thermodynamics,
involves an increase in entropy (so that p/p. rises above the value given by (1) for given

P/PO). This COUnterSobjection (ii) because the ShOCk~aves achieves energY conservation by
abandoning entropy conservation – instead of the other way round.

For practical engineering purposes, of course, it often suffices to treat shock waves as

sharp discontinuities satisfying conservation equations for mass, momentum and energy,

These equations had actually been mitten down in 1889 – for fluids in general – by Hugo-

niot [8] who, on the other hand, had not been in a position to appreciate why, in most

fluids including air, the physics of shock wave formation permits only the appearance of

compressive discontinuities with a (calculable) entropy increase across them.

This survey continues with Section 2, on the dynamics of weak shock waves, which shows

how closely the original Riemann idea can follow their behaviour provided it is recobtized

that the waveform’s loss of mechanical energy is a ‘hidden’ loss, taking the form of that

dissipation inside the shock wave whose magnitude is reflected in the entropy change. Then

Whitham’s extensions of the theory beyond the case of plane waves are described; while, in

Section 3, some aeronautical applications are indicated.

By contrast, the dynamics of strong shock waves (Section 4) calls for radically different
approaches because specific entropy, although conserved for any fluid particle behind a shock
wave, varies steeply with the shock wave’s strength at the time when that particle crossed

it. These new approaches, making fruitful use of self-similar solutions, were again pioneered

by G.I. Taylor.

Yet, despite all the theoretical advances, shock wave dynamics has been able to make

progress only through an intimate cooperation between gifted experimentalists, making use
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Changes in ln(p/pT) and in [c– *(7 – l)u] across a shock wave of strength~.

of refined optical techniques in wind tunnels and shock tubes, with experts in applied math-
ematical analysis and, more recently, in computational fluid dynamics (CFD). Section 5

outlines accordingly the shadowgraph, schlieren and interferometric techniques that have

been the main sources of experimental data, and then concludes by showing how CFD
schemes which discretize equations of motion in ways that maintain the precision of overall
conservation laws can yield valuable descriptions of shock wave dynamics.

2. DYNAMICS OF WEAK SHOCK WAVES

If fluid pressure is abruptly raised by a factor (1 + ~) on the passage of a shock wave,

its ‘strength’ may be defined as the proportional increase ~. Commonly, a shock wave with

/3< 0.5 is called ‘weak’ [9].

Such weak shock waves disturb only slightly the accuracy of the adiabatic relationship
(l), since the change in ln(p/p~) across the shock wave (proportional to entropy change)
remains less than 0.0055 for any ~ > 1; while for air, with ~ = 1.4, it is at most 0.0027. The

upper curve in Figure 3 is a log-log plot of this change for air against the strength ~, which

confirms the cubic limiting form as ~ -+ O,

A [ln(p/pv)] N (72 – 1)~3/1272 (= 0.041~3 for air), (4)

although showing that when ~ = 0.5 the actual change, 0.0027, is only about half as much
as is implied by the limiting expression (4). These very low values suggest that errors in
using the constant-entropy relationship (1) to study gas motions which incorporate weak
shock waves may be extremely small, even though the entropy change across a shock wave

results from dissipation processes within it that are essential (Section 1) to its very existence.

Such a suggestion, for a plane wave entering still air, would imply rather good accuracy for
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Figure 4. Steepening continued (a and b are first and last waveformsin Figure 1, while C, d, e are later

the relationship (2) between c and u ~~hich ~emaml derived exactly on the assumption

of constant entropy; and the lo~ver Cllrve in Figllre 3 collfirllls, indeed, that the difference

c - ~(~ – l)u changes across a weak shock wave by at, most, a factor 1.0009.

Where shock waves are weak, then, all contillllolls parts of the waveform obey closely

the propagation law (3) used to constrllct, Figl~e 1; llame]Y, that each value of u, when

plotted against z – cot, has after time t been shifted a distance ~(~ + l)ut to the right, That

construction is continued in Figure 4 to st,ill later t,imes t wit,h, at each stage, the necessary

discontinuity placed so that overall mass conservation is retained. TM condition, the ‘equal
area’ law of Whitham [10], requires that the discontinuity leaves unaltered the area under the

curve (strictly, area under the corresponding curve of density p against distance — although
a clos~to-linear relationship of density variation to u allows the law to be applied, with quite

good approximation, to the graph of u itself).

Briefly, then, sound propagation outside any weak shock wave still satisfies constant-

entropy laws because entropy inhomogeneities behind it have negligible effects on propaga-

tion. By contrast, the wave’s overall mechanical energy is progressively diminished (Figure

4) by the accumulated effects of energy losses ‘hidden’ inside the apparent discontinuity.

Not only energy, but also information, disappears in this process! — as Figure 4 also

demonstrates. Absolutely all information about the original shape of the compression pulse,
except about the area Q under the curve, has disappeared in the later stages of this process,
when the waveform has become a right-angled triangle of area Q with a hypotenuse of slope

[+(7+ 1)~]-’ (thereciProcalsloPe ~~/~u increasesat arate 1(7+1), becauseavalueu+~u
propagates faster than a value u by a signal-speed excess of ~(~ + 1)8u). Such a triangular

waveform has a height [4Q/ (~ + 1)t] 1’2 — the jump in u at the shock wave — and a length

[(~ + l)Qt]l’2.Moreover the energy of the wave, proportional to length and to amplitude
squared, diminishes as t–112 , while its rate of decrease, proportional to t–3/2, is found to
agree exactly with the rate of energy loss ‘hidden’ inside the discontinuity as implied by the

cubic form (4) of dependence of entropy change on shock wave strength.

The corresponding conclusion for an initial waveform including negative as well as positive
values of u is that it develops asymptotically into an ‘N-wave’ (Figure 5) which consists of two

right-angled triangles, with areas Q+ above the u = Oaxis and Q_ below it and with aligned

hypotenuses of slope [~(~ + I)t]-l . The jumps in u at the shock waves are [4Q+/(7 + l)t]li2

and [4Q_/(7 + l)t]l’2 and the overall length is [(~+ l) Q+t]l’2 + [(~ + l) Q_t]l’2; while, yet
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FiO~re5. Case of an initial~raveform(~o]idline) ~vit]l~ositil~elobe of area Q+ and negative lobe of area

~-. Brokenline: s~b~eq~lelltlj.deve~oPing~.,vavc \vithunchangedarea for positive and negative lobes.

again, mechanical energy diminishes as i - ljz Ivith all energy dissipation ‘hidden’ inside the
two shock waves.

It k not just in plane waves that, sllch behaviollr is found; as may be illustrated (again

following Whitham) by analysing [11] t}lc ‘exploding wire’ phenomenon that results from
instantaneous discharge of a condenser throllgh a very thin wire. A cylindrically expanding

sound wave is generated in t,he S(lrrolmding air by t,he wire’s sudden vaporization; however, an
interesting difference from the plan~wave ceaseemerges already from classical linear analysis:

cylindrical wave propagation, on such an analysis, converts the sound source (the outward-

pushing vapour) into a wave with both positive and negative values of the outward velocity
u. Thus, at radial distances r beyond a certain value rl,

‘= (y’’ud’-c+’+ (5)

where the waveform U1(t) comprises a positive phase followed immediately by a negative

phase of identical area Q (making ~ U1(t)dt = O,and so reconciling the necessary r-l depen-
dence of energy flux to the impossibility of any indefinite growth with r in the total outward

displacement 2m J udt).

This means that, on nonlinear theory, an IV-wave (and indeed, a ‘balanced’ .IV-wave with

equal areas Q+ = Q_ = Q) is necessarily formed. Whitham’s analysis showed how a value
u,= (r/r1)112u is again propagated (see (3) above) at a signal speed dr/dt = co+ ~(~ + l)u

which replaces the simple Q value of equation (5). To a close approximation, this gives

(it

$ =cil ()- i(7+1) Q “’w;’!r

which can be integrated as

t – c$lr + ~(~ + l)(rlr)112u1~-2 = constant,

(6)

(7)

correcting the time t when a given value of U1 is found. Nonlinear theory replaces, then, the
argument of UI in equation (5) by the left-hand side of equation (7).

Thus the temporal waveform (graph of UI as a function oft) is now sheared (backwards)
in such a way that the reciprocal slope &/6u1 takes an asymptotic value

–* (~+ 1) (rlr)lj2~-2. (8)
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Figure 6. Illustrating how an exploding wire generates pressure-time curves of N-wave shape, (a) and (b)
at differentradial distancesr, and comparingthe pre.ssmerise at the initialshock wave with an r–314law

(broken line).

The ultimate hr-wave therefore takes the form of two right-angled triangles of area Q whose

aligned hypotenuses have the reciprocal slope (8). Each triangle has a height (discontinuity
in u1) equal to

[

8QC; 1
1/2

(’y + 1)(?-1?-)’/2
(9)

which varies as r ’114 ; but, since u = (rI/r) li2u1, this yields Whitharn’s remarkable pre-

diction of an inverse-three-quarters-power dependence on r for the strengths of both shock
waves — which has been accurately verified in experiments on exploding wires (Figure 6).

The time interval separating the shock waves takes a value

[W+VQ(T@’’2C;2]1’2 (lo)

which increases as the fourth root rlJ4 of the distance travelledj while the wave energy decays
‘1/4. with all the energy dissipation hidden, once more, inside the shock waves.asr ,

It is of course to be understood that the treatment of shock waves as discontinuities

throughout Section 2 can be seen as justifiable because each shock wave has a Taylor thick-
ness (Figure 2) very small indeed compared with all other relevant distances. As with

singular perturbation problems in general, the true behaviour of u is obtained by matching
the outer solution involving a &continuity with the inner solution depicted in figure 2.

Exclusively in the case of plane waves is it possible, as Hopf [12] fist showed, to obtain
a uniformly va,lid approximation to u from the asymptotic of solutions of the Burgers

equation. Such an approach is especially valuable [13] for studying shock waves of extremely
low strength; and for inv~tigating flOW details where, for example, two shock waves unite

to form a single stronger shock wave.



3. AERONAUTICAL SHOCK WAVES

Interactions between waves and flows are evident in all the studies outlined above, from

equation (3) onwards. Such interactions become even closer, however, in a supersonic flow;
that is, one with speed U which exceeds the sound speed co in the undisturbed flow. In an
aeronautical application, for example, this flow speed U means the speed of the air relative

to a moving aircraft. Then, not only do ‘waves and flows interact’, but the flow may consist
ahnost entirely of waves whose propagation has been annulled (that is, brought to rest) by
the flow.

In particular, propagation at an angle @ to the wind of very weak sound waves at the

undisturbed sound speed co can be annulled by the opposing component U cos @ of airflow

if

Ucose= co. (11)

Provided that U > co, an angle @ satisfying (11) exists, and such waves can be a permanent

feature of the flow.

For waves that are not so weak [14], the true signal velocity (3) replaces co in equation
(11), so that ~ is reduced for positive u (or positive excess pressure) and increased for

negative u. Moreover, if a shock wave appears, its own speed of propagation replaces co in

(11).

Extra aerodynamic drag is associated with the ‘hidden’ energy loss arising in any shock
waves, such lost energy needing to be restored from additional work done by thrust to

overcome this component of drag. So ‘aeronautical shock waves’ need to be kept as weak as
possible,

The above principles may first be illustrated by the two-dimensional flow around a su-
personic aerofoil (Figure 7). Pioneers of supersonic aerodynamics considered using straight

wings, with spans at right angles to the oncoming flow, and with an ‘aerofoil’ cross-section
uniform along the span, and yet appreciated that aerofoils suitable for supersonic speeds
needed to be quite different from low-speed wing sections. They must be thinner, and must

also have a sharp leading edge, so that disturbances to be oncoming supersonic stream re-

main small and the shock waves generated are weak. Then the whole visible flow pattern

takes the form of stationary waves propagating at angles @ satisfying either equation (11)
or similar equations with modified right-hand sides.

Each wave arises from a disturbance to the incident airflow by the aerofoil surface. The

point A where such disturbance is zero (u= O) emits a wave in accordance with equation (11).
But the direction of the surface at B is associated, as Figure 7(b) shows, with propagation

of a positive value of u at an increased speed ~ + 1.AJ giving a reduction in Q; while the

direction at C is shown in Figure 7(c) to be compatible with u < (1 and an increased value

of (3. The excess pressures, positive at B and negative at C’, produce a resultant drag,
related rather precisely to the hidden energy loss in the N-waves (compare Figures 7(d) and

5) generated by such nonlinear propagation. But practically no waves arise in the region
behind the rear shock wave, where the incident airflow is undisturbed.
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Figure 7. (a) Stationarywavesgeneratedin supersonicflow (symmetricalabout the broken line) about a
thin aerofoil. (b) At B, the wind velocity u and a velocity u carriedby the waveshave a resultantv that

slopes up~vards(along the tangent to the aerofoilsurface). The stationarywave is in the direction w

(resultantof U and the signalvelocity). (c) At C, the negativevalueof u causesthe resultantv to slope
downwards(again along the tangent) and the stationmy wavenow has a reduced angle to the wind.

(d) Formof the balanced N-wave at the sectionshown. (e) At positive angle of attack, this becomes an

unbalancedN-wave, with downwardmomentum.

The symmetrical flolv of Figure 7(a) changes, at a positive angle of attack, into a flow
that gives lift; brieflY, because each value of u is decreased on the upper surface while values

on the lower surface are increased — so that all pressures on the lower surface exceed the
corresponding upper-surface pressures. Needlas to say, an equal and opposite force is exerted

by the aerofoil, conferring downward momentum on the fluid. Yet this momentum appears,
not in any wake re@on ~ in low-speed flow, but almost exclusively in the flow between the

shock waves! — where the balanced N-waves of Figure 7(d) become unbalanced, as Figure
7(e) shows, and include a downward component of momentum (see also Figure 8).



Figure 8. The complete flow field [14]around a lifting aerofoil (actually,one twice as thick as that in

Figure 7).

Nonetheless, designers of supersonic aircraft in the twentieth century were increasingly

drawn away from wings with such aerofoil sections by hard facts about aeronautical shock

waves. The aim of keeping these weak, so as to reduce shock-wave drag (and, also, the

supersonic boom heard at ground level), isachieved best, not by shapes that arethin in just
one dimension (Figure 7), but by shapes that are slender in both dimensions perpendicular

to the flow. Accordingly, the rather simple concepts of supersonic aerofoil theory (Fiewe 7)

required careful extension to involve three-dimensional wave propagation if essential features
of the ‘slender-body aerodynamics’ needed for M >1 were to be usefully exploited.

A first suggestion of what maybe called for is offered by the analysis (Section 2) of shock

waves produced in air by an ‘exploding wire’. Here, the source of sound is the appearance

in the fluid of foreign matter, the outward-pushing vapour, whose cross-sectional area S

increases very suddenly with time; generating, on a linear analysis, the air motions (5), which
are converted by nonlinear effects into an IV-wave. Flight at supersonic speeds through a

mass of air similarly introduces foreign matter (the aircraft), whose overall cross-section S in

contact with that air mass increases very suddenly with time — though it then falls abruptly
to zero. For a slender shape at supersonic speeds, this suggests the possible importance of a

function S(Z), describing variation in the wind-direction z of the body’s cross-sectional area

S normal to that direction.

Slender-body aerodynamics showed [14] how shapes where the function S(Z) varies rather
smoothly and gradually along the aircraft’s length have two advantages: (i) shock-wave
strengths are kept relatively 10W; and (ii) they are quite well estimated, as for an exploding

wire, in a two-stage analysis — linear and then nonlinear — with an acoustic source strength

depending on the total area s(z) of each cross-section rather than on its detailed shape. Of

course the waves spread, not cylindrically but conically at the angle ~ defined by equation

(11); as the linear part of the analysis makes clear already because equation (11) represents

a ‘stationary phase’ condition.
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Figure 9. Illustrating a fIOW (symmetrical about the bro~ell line) aroundan aerofoilat high subsonic Mach

number, when there appears in the fIoW a limited supersonicregion terminatedby a ‘discontinuity’ that

incorporates a shock-wave/boundary-layerinteraction.

This initial, linear analysis can be further improved if the nondirectional simple-source
radiation is modified [15] by adding a distribution of downward-pointing acoustic dipoles of

strength L(x), representing forces on the fluid equal and opposite to the lift forces on aircraft

cross-sections. This improvement, after the necessary nonlinear adaptation, produces modest

increases of IV-wave strength below, and decreases above, the aircraft.

During the ‘century of shock-wave dynamics’ a significant first step in extending air

transportation to supersonic speeds was made with Concorde [16], which offers busy passen-

gers the benefit of journey times of only 3 hours over ranges of around 6000 km. In spite
of substantial shock-wave drag, its slender shape achieves at U/~ = 2 a lift-drag ratio of

around 10, and the shock waves produced below it are found, after propagation into the

much denser air at ground level, to involve pressure jumps of only about a millibar.

Even the passage over a wing of a subsonic airstream may accelerate it locally to super-

sonic speeds and allow shock-wave formation [17]. Fiame 9 illustrates this for symmetrical

flow over a typical subsonic-speed aerofoil section, showing how a supersonic region can form

downstream of the point of maximum thickness, with readjustment to subsonic flow possible
only at a discontinuity. (For a lifting aerofoilj it is especially on the upper surface that such

a discontinuity tends to form.) Moreover, this discontinuity involves not just a simple shock

wave but a complex ‘shock-wave/boundary-layer interaction’, including upstream influence

[18-21] of the shock wave on the boundary layer (that is, an influence extending much farther

upstream than might have been expected).

In the design of transport aircraft it is important to avoid such effects, above all by
the use of sweptback wings. These allow aeronautical shock waves to be eliminated up to

quite high subsonic speeds (U/q = 0.85); essentially, because just the component of airflow

perpendicular to the wing is accelerated by passage over it, while the parallel component
remains unaltered.

Other concepts valuable in design for Mach numbers M = U/q close to 1 include Whit-
comb’s famous ‘transonic area rule’ [22]. Briefly, an aircraft for which S(Z), the distribution



of cross-section area defined above, varies smoothly and gradually with z will experience

aerodynamic forces which, to an even greater extent at transonic than at supersonic speeds,

are determined almost entirely by that distribution. For such a determination, however, the

earlier two-stage analysis — first linear and then nonlinear — needs at transonic speeds to

be replaced by a single-stage, fully nonlinear analysis.

But, beyond any such conceptual aids to aerodynamic design, it is mainly on advanced

computational fluid dynamics (CFD) that modern designers rely for detailed analysis of
flows over an aircraft configuration in complicated conditions like those of transonic flight.
Section 5 outlines techniques which ensure that modern CFD programs [23] can closely

predict locations and strengths of shock waves appearing where continuous flow has become
impossible.

4. DYNAMICS OF STRONG SHOCK WAVES

Propagation laws behind a shock wave of large, yet variable, strength cannot correctly

be simplified by assuming closely uniform entropy; nevertheless, a fluid particle’s entropy

per tit mass stays at the level — different for each particle — to which passage through
the shock wave raised it. Thus equation (1) is replaced by an equation

(12)

stating that the ratio p/p~ (with logarithm proportional to entropy) is unchanging for any

particle with the fluid velocity u.

Formidable difficulties oppose attempts to solve equation (12) together with the ordinary

Euler equations of continuity and momentum for a compressible fluid. Yet, from 1933
onwards, important successes in overcoming those difficulties were won by G .1. Taylor: the
pioneer earlier responsible, with Lord Rayleigh, for resolving the enigma described in Section

1. These successes came from the computation of ‘self-similar’ solutions to the equations

described above; that is, solutions where nondimensional forms of p, p and u are just functions
of a single nondimensional quantity ~ formed from the space and time coordinates — and,
therefore, can be computed by solving ordinary differential equations with respect to [.

Actually, in Taylor’s first such study, made jointly with J.W. Maccoll, no time coordinate
arises since all the waves remain stationary in a steady supersonic stream, as in Section 3

above. In this study [24] of axisymmetrical flow past a cone, ~ may be taken as a spherical

polar coordinate ~, and the flow equations are solved in the interval @C< ~ < ~~ where

~c and $, are the semi-angles of the solid cone and of the attached conical shock wave,

respectively.

Such a solution can be found [25] for all cone angles@. up to a certain maximum value

(v)c ~.,, which is plotted against the Mach number it4 of the undisturbed stream in Figure
10. For this maximum cone angle, ~~ takes a critical value (~$).rit , alSO shown, which can

be defined as that angle ~. between a stationmy shock wave and the oncoming supersonic
stream for which streamlines are deflected (abruptly) through the greatest possible angle
6max . Such streamlines, on the other hand, proceed to curve away from the cone after
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Figure 10. Defining the cone angle #Jcand the shock wave angle ~, , and plotting [@.)crit, (d-d~u and

6m= againstM.

crossing the shock wave, which is why this maximum deflection 6~.X is less (Figure 10) than
the corresponding cone angle (#C)~.X .

A surprising property of the equations is that they possess two solutions for each ~. <

(IJA..: one with 4.< (V.)crit and OIWwith & > (V.)crit. OnlY the first Of these iS fo~md tO
be of practical importance; representing with goo~ accuracy the axisymmetrical supersonic

flow over cone-shaped noses of missiles. Yet early conjectures that the second solution might

fail to arise owing to instability were incorrect; that solution, involving a stronger shock

wave, has in fact been found to represent locally the fluid flow near the tip of a cone which

protrudes forwards out of a wide enough blufT body in a supersonic stream.

Taylor also studied how strong shock waves develop -with time. Here, an important
limiting case is that of highly intense shock waves traveling at speed U into an atmosphere

at rest with density p.. Then the pressure p., density ps and gas velocity v. behind the
shock wave satisfy simple Iaws

[
Ps(u – %) = POLJ2, p(wv. = p., pou $V: + (~ 3)/% 1

= p.v. (13)

which (i) equate mass flows of gas entering and leaving unit area of shock wave while (ii)

equating rates of gain of momentum and energy for that gas to force and its rate of working,
respectively. Here, -y (again assumed constant) is a ratio of specific heats for the hot gas

behind the shock wave; while, on the intense-shock-wave approximation, both pressure and
internal energy in the undisturbed gas can be neglected. Equations (13) have the simple

solutions
2

p. =
‘y+l—pl)u2,p.=— PO> us = -&J. (14)

7+1 ~–l 7+1

Rather as in 1910 (see section 1), it was two independent investigations in 1941 by G.I.
Taylor and John von Neumann (see [26] and [27]) which simultaneously uncovered how a
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Figure 11. The function P(c), l?(~) and V(<)plotted against~/<$,

highly intense shock wave spreads spherically after the release, very close to a central point,
of an extremely large amount of energy E. With r as radial distance from that point, they

solved equations of continuity and momentum,

6’pqpv) au 1 ap
~+ ~+2:=o, g+v—+-—=o

& r dr
(15)

together with the entropy equation (12), subject to boundary conditions (14) at the shock
wave and the constancy of total energy E. Self-similar solutions of equations (15) and (12)

take the form
r’

P = Po#lO, P = Poqc), v = ;V(O, (16)

where P(c), R(<) and V([) are nondimensional functions of an appropriate nondimensional
variable <.

In the Taylor-von-Neumann case, dimensional analysis yields

1/5

<=r(~
)

(17)

since the bracketed fraction has dimensions mass times (length)-3 divided by mass times

(length)2. Then, if ( = (, at the shock wave, its radius grows as

()Et2 1’5
r=<~ — with velocity U = ~ ~

Po
(18)

so that equations (14) and (16) yield simple boundary conditions for the functions P(c), l?(<)
and V(c) at ~ = (~; from which they can be calculated (see Figure 11 for the case ~ = 1.4)
in terms of ~/~~. Finally, ~~ is obtained from an equation

4X
1[

; ;Rv’ + (y – 1)-1P] (4d( = 1; (19)

which states that the total energy (integral within the spherical shock wave of the energy

per unit volume ~pv2 + (~ – l)-lp) is equal to E, and which gives <. = 1.033 for the case

‘Y= 1.4 treated in Figure 11. It is perhaps noteworthy that the velocity field shown there
implies a huge rate of expansion, able to reduce density behind the shock wave to very low



values indeed — yet without this fall being mimicked by the pressure because fluid traversed
relatively early by the shock wave has relatively high entropy per unit mass.

Taylor [26] demonstrated good agreement with observation for the two-fifths-power law

(18) derived from dimensional analysis. By contrast, two other important calculations have
used solutions of equations (15) and (12) in the form (16) but with a choice of ~ different

from (17) because dimensional analysis was not available.

As a first example, Barenblatt and Sivashinsky [28] studied certain problems where the
energy E is itself variable, because gas crossing the shock wave either loses energy per unit
mass (by radiation) or gains it (by chemical reaction). Those problems may be treated by
modifying y in equations (13) to a value Y1 different from the true ratio of specific heats
~(here, ~1 < ~ for extraction, but ~1 >7 for addition, of energy); the boundary conditions
then take the form (14) with ~ replaced by ~1 — even though 7 is unchanged in the partial

differential equation (12). For this ‘mixed’ problem, they used equations (16) with

[ = T/(At”), and with ( = 1 at the shock wave; (20)

then the shock wave velocity is cw/t and, when this value is inserted for U in the modified

boundary conditions (14), boundary values P(l), R(l) and V(1) may be determined. How-

ever, a solution of the partial differential equations behaving regularly at the central point
r = O can attain these boundary values only for one value of a; which is found to be rather

less than two-fifths when energy is extracted but greater when it is added.

A second example of solutions (16) with a different choice of ~ from (17) had appeared
already in 1942, when K.G. Guderley [29] studied an ‘implosion’; that is, an intense spherical

shock wave which converges on a point, reaching it at time t = to. For t < to, the use of

(= ‘
B(to – t)~ ‘

with ( = 1 at the shock wave, (21)

again allows determination of P(l), R(1) and V(1); and Guderley showed when ~ = 1.4
that, among solutions of equations (15) and (12) for ~ z 1 attaining these boundary values,
the one with finite energy has,0 = 0.717.

Beyond treatments of the dynamics of strong shock waves by use of a single similarity
variable <, two other analytical approaches maybe described. When a shock wave’s strength,

though large, varies relatively slightly, Lighthill showed in a series of papers [30-33] that

the difficulties posed by equation (12) disappear. Thus, although entropy inhomogeneity

generates vorticity and so rules out the acoustician’s favourite use of a velocity potential,

nonetheless the pressure can be used as a sort of ‘acceleration potential’ satisfying the usual

acoustic equations relative to the flow behind the shock wave. Briefly, the (small) flow

velocities u in this frame of reference satis~ linearised equations

8U
Vp =

1 ap 1 dp
–Pl~ and V”u=——-=———

P1 ~ plc$ at ‘
(22)

where pl and c1 are the density and sound speed behind the undisturbed strong shock wave,

and where a linearised form of equation (12) equates the last two quantities (since pressure
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Figure 12. Diffractionof shock wavesof pressureratio pl/po = 2 (on left) and 10 (on right) at a corner

with angle 6 = 0.1 radian. The plots of (pl – pz)/6(pl – po) showdistributionsof wallpressureP2.

and density are adiabatically related for each fluid particle). Thus the linear -wave equation

02p/0t2=c~V2p is satisfied by the pressure.

Just one interesting problem solved by this approach is sketched here (see the book by

Srivastava [34] for a general review). It may be described as ‘diffraction of a strong shock

wave’ by an oblique-angled corner where a straight wall abruptly turns, away from the flow,

through a small angle 6.

The absence of any characteristic lengths in the definition of this problem allows solution

[32] in terms of two similarity variables x = X/clt and y = Y/clt, where (X, Y) are space

coordinates in the frame of reference defined above. Their origin is at a distance c1Nllt to

the right of the corner u-here J41 is the hlach number of the flow (from left to right) behind

the shock wave. A circular arc of radius Clt with this origin as centre bounds the acoustic

disturbances; however, because any shock wave travels subsonically relative to the flow

behind it, that arc is but part of a semicircle, the other part being cut off by the disturbed

shock wave — where a linearized boundary condition on p has to be carefully determined so

that the whole pressure field can be calculated.

Fiawre 12 shows for ~ = 1.4 the shape of that field, and the distribution of p along the

wall, in two interesting cases: a shock wave of strength ~ = 1 (pressur~ratio 2) for which

Ml = 0,472 so that the corner lies inside the circular arc, and one with ~ = 9 (pressm~ratio

10) for which Ml = 1.345 and the flow around the corner, outside the circular arc, is just

a steady supersonic flow at this Mach number. Pressure reductions on the wall beyond the

corner are seen to be about 3 times bigger for the stronger shock wave.

In both cases, because entropy stays constant for a particle, with X and Y roughly
constant, isentropic lines in the (z, y) plane are approximately radii y/z = constmt through

the circular arc’s centre. It follows that entropy variations appear in trian@m regions,
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Figure 13. Shock ~avesof Pressureratios 3 and loincidentona concavecorner,

to the right of the dotted lines in Figure 1.2, comprising all such radii that pass through

disturbed parts of the shock wave.

When the angle 6 is negative, the previously convex corner becomes concave to the flow,
and pressure reductions change to presslue excesses; while expansion waves, shown as broken

lines in Figure 12, are converted into shock waves. The altered configuration was illustrated

by Lighthill [32] for incident shock waves of strengths ~ = 2 and 9 as in Figure 13.

From the days of Mach himself [35], reflexions of plane shock waves had been observed

(see Section 5) to take ‘regular’ forms at plane walls making large angles to the flow behind

the shock wave, while changing for small angles into ‘Mach reflexion’ — comprising an inter-

section of three shock waves and of a surface separating regions of uniform and nonuniform

entropy — as in Figure 13. The analysis that produced this Figure offered a first indication

of the dynamical processes underlying the formation of such intersections.

The dynamics, and also the physics, of strong shock waves were hugely developed in the
1950s to meet the demands of reentry-vehicle design [36]. In this survey of just the former

field I highlight a simple piece of fluid dynamics [37] which shows how a reentry-vehicle nose

having locally the form of a spherical cap generates at high hypersonic speed V an intense
shock wave in the form of a concentric spherical cap, whose (larger) radius depends on K:

that density ratio at an intense shock wave which conditions (14) equate to 6 for ~ = 1.4
— although various physical effects in air (primarily, dissociation of molecular oxygen) raise

IS to larger values for reentry-vehicle shock waves. The analysis, adapted to effectively
incompressible flow fields near the nose, proceeds inversely by showing that a spherical-cap

shock wave of radius c gives rise to a flow with a spherical-cap streamsurface of a certain
radius a < c.

In spherical polar coordinates, the Stokes stream function # satisfies

+= V’:;20, g= Vc sin2 O on the shock waver= c, (23)

while the azimuthal vorticity component w is

la’+ 18

()

1 a$
w=—— ———— (24)

r sin O &2 ‘rsae sinQ&l “

Now the vorticity produced by gradients of entropy immediately behind the shock wave may

be shown to satisfy the equation

w (K - 1)2V
=

KC2 ;
(25)

rsin6



Figure 14. Stand-off ratio (c – a)/a plotted againstthe densityratio K acrossan intenseshock wave.

moreover, the left-hand side is a quantity known to remain constant along every streamline of
an tisymmetrical flow. Therefore equation (25) for w may be used everywhere in equation

(24) to give a partial differential equation for ~, which can be solved under the boundary

conditions (23) as

?J=v:#.q3(K-o,(;)4-5K(K -4) (:)2 +2(K - 1)(K -6) (:)-’]; (26)

the spherical streamsurface r = a being determined as the greatest value of r < c for
which the quantity in square brackets vanishes. Figure 14 confirms that the ‘stand-off ratio’

(c - a)/a for the strong shock wave falls steeply as the density ratio K increases (cramming

into less and less space the flow between shock wave and solid surface). Lighthill shows

how this solution helps to validate a certain more comprehensive hypersonic approximation
(often called ‘Newtonian plus centrifugal’) to flow around reentry vehicles.

5. OPTICAL AND NUMERICAL EXPERIMENTS IN SHOCK WAVE DY-

NAMICS.

During most of the 20th century, crucial contributions to the development of shock wave
dynamics were made by optical observation. The essential techniques had been invented
much earlier; the schlieren method by A. Toepler [38] in 1867 and the interferometer method

by L. Mach [39] in 1889 — while direct shadow photography of shock waves had been

successfully used in 1887 by his famous father E. Mach [3]. Accordingly, it may suffice in

a history devoted to the past 100 years to stress that all these inventions were aimed at

acquiring data on a density field from the essentially linear relationship between density

and refractive index. The interferometer method yields the best quantitative data, since it

can compare the integrated densi~ along each optical path through a flowing gas against

integrated density along an equal path through undisturbed gas. For identifying shock waves

and other regions of sharp densi~ gradient, however, the schlieren method, which effectively



integrates along an optical path the density gradient in one particular direction perpendicular
to that path, is specially appropriate. By contrast, direct shadow photography is of much
less quantitative value; although, admittedly, it is easier to use in non-laboratory conditions.

Progress during the century of shock wave dynamics was due above all [40] to close

cooperation between (on the one hand) optical experimenters, using schlieren and interfer-
ometric techniques in supersonic wind tunnels — and later in shock tubes — and (on the

other hand) theoretical analysts applying methods like those described already to interpret
existing experiments or to suggest new ones. A lot later in the 20th century, significant

advances were made in numerical experimentation on flows incorporating shock waves; that
is, on techniques within computational fluid dynamics (CFD) specially adapted to captur-
ing the appearance of effective discontinuities within the flows; and, once again, continued

progress has depended on good cooperation of numerical with theoretical analysts, and of

both with optical experimenters.

Although all the excellent visual aids available in lecture-theatre conditions will allow

participants in the IIAV Congress to be shown many schlieren and interferometric records

of shock wave behaviour, together with impressive results of numerical experiments, their
inclusion in the preprinted written version of this survey is very sharply restricted by space
limitations. Accordingly, the remainder of Section 5 is devoted (i) to sketching the develop-
ment of the shock tube, as a preeminent specialised device for studying shock wave dynamics,
and (ii) to outlining the essential ideas underlying accurate shock-capturing methods in CFD.

History repeated itself yet once more in 1946, when accounts of two independent in-
ventions of essentially the same shock-tube device were published simultaneously (a) in the

Proceedings of the Royal Society [41] and (b) in Physical Reviews [42], with G.I. Taylor in-
volved in one of them! — as theoretical analyst for (a) with the experimental team of William

Payman and W.C.F. Shepherd — while the fine Princeton physicist Walker Bleakney led
those responsible for (b), including A.H. Taub as theoretical analyst. An immediate benefit
from both experimental prograrnmes was a comprehensive verification of theories of nonlinear
acoustics and shock wave dynamics.

In a shock tube, gases at pressure pOand at a much greater pressure pl are separated by a

diaphragm, whose sudden rupture emits a shock wave into the former gas and an expansion
wave in the latter; but, because the waves travel in opposite directions, an intermediate
region of uniform pressure p. and velocity v. behind the shock wave separates it from the

expansion-wave region. For shock waves of arbitrary strength the relationship between p~
and us (calculated from a fuller form of equations (13), without neglect of the pressure p. or
the internal energy po/(~ – l)po in the undisturbed gas) is

(27)

On the other hand, the expansion wave satisfies the exact equations (Section 1) of nonlinear
acoustics so that the local sound speed is co + ~(7 – l)u (here, both gases are taken to have
the same undisturbed sound speed c1 = ~), with u as the gas velocity in the direction of

propagation. However, u as so defined takes the value (–v.) in the intermediate region;
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Figure 15. Log-log plots againstv./~ of expressions(27),(28) and (29), together with the overall

ratio PI/gJo(which, as the product of pl /p. and ps/po, is on a log-log plot obtained from them by
pressure

adding).

where, therefore, c, = ~ – ~(-y– l)v~ and, by equations (1),

:= (:)27’(’-’)= [1-~’~-1%1-27(7-1)
(28)

Figure 15, for -y= 1.4, plots on a log-log basis expressions (27) and (28) as functions of vs/co,

together with their product pl/po which is the initial pressure ratio across the diaphragm.

For any pl/po, therefore, Figure 15 determines both W~/COand also the press~e ratio PS/Po

across the shock wave, together with its velocity U where

Figure 16. Shadow photograph of regular reflexionof shock wave traveling horn left to right, and schlieren

photograph of Mach reflexion.
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“m steepening.

(29)

Both the papers published in 1946 obtained excellent agreement with this simple theory.

Then the Princeton team, after naming the new devices ‘shock tubes’, went onto use

them [43] for advanced studies in shock wave dynamics, including accurate measurements of

many types of shock wave interaction. Figure 16, for example, includes a shadow photograph

of the reflexion of a shock wave at a plane wall inclined at a relatively large angle, giving

regular reflexion, along with a schlieren photograph for the case of a smaller angle, giving

‘Mach reflexion’ (see Section 4) with 3 shockwaves and a discontinui~ of entropy all meeting
at a point in the midst of the fluid.

Again, in a special experiment to verify the theory of waveform steepening (Section 1),

three successive interferometer photographs of the development of a plane wave were taken

(Figure 17), Here, each dark line is essentially a graph of the density (on a suitable scale)

against distance. In (a) they have moderate slope, in (b) they have become steeper, and in

(c) discontinuous.

Later developments of the shock tube included some in which still stronger shock waves

could be achie~ed for a given pressure ratio pl/po by use of a driving gas such as hydrogen

with high sound speed c1. Then the auagrnented c1 replaces ~ in equation (28) for pl/ps

so that, in FiOgure 15, its log-log plot as a function of v~/co is shifted bodily to the right;

evidently, this allows the contributions of pl/p~ and p~/po to their product pl/po to become

much more unbalanced in favour of the second ratio .... Such further developments helped

to add greatly to knowledge of the physics [44], as well as of the dynamics, of intense shock

waves.

Another fine Princeton thinker about shock waves was John von Neumann (whose 1941
discovery of a key self-similar solution has “been mentioned in Section 4 above). In 1950

he produced mith R.D. Richtmyer a far-seeing paper [45] about how numerical schemes for

CFD would need to be adapted in order that the appearance of shock waves in the real flow

might be properly ‘captured’ in a numerical representation. Here, it is only the essential

idea of such schemes that is outlined.

It stems from the fundamental 191O discovery (Section 1) that, in a real gas, wave ‘

steepening processes only form a discontinuity because they are opposed by certain specific



physical effects — including viscous diffusion of momentum as well as thermal diffusivity.

By contrast, any CFD scheme describes the dynamics of an ‘artificial’ gas, with the ‘graini-
ness’ that comes from representation on some discrete grid system; although the numerical

analysts’s object, of course, is to make its behaviour mimic that of the real gas as closely as
possible. To this end, it is necessary to ask: can this ‘artificial’ gas be endowed with some
specific ‘artificial’ effect possessing two essential properties (i) that it will oppose wave steep-

ening ‘cleanly’, in such a way that the rwulting opposition creates rather a sharp, monotone
discontinuity (within limitations imposed by mesh size), and yet (ii) that it will produce
very little effect in other regions of the flow.

Von Neumann and Richtmyer [45] proposed the name ‘artificial viscosity’ for any such
specific effect in a CFD scheme that would exhibit both properties (i) and (ii). They ex-
plained why an attempt at close numerical representation of the viscous and/or other dif-

fusive processes in the real gas would fail to satisfy the conditions. Furthermore, they gave
a valuable first suggestion for the mathematical form which a successful artificial viscosity
would need to take if numerical representations of compressible-flow ‘Euler’ equations of

continuity, momentum and energy were to be able to represent as closely as possible inviscid

compressible flows in which shock waves may possibly appear. In the meantime, the need
(stressed in Section 1) for overall conservation of mass, momentum and energy could be
satisfied if a ‘conservative’ CFD scheme were used.

Any full account of later developments in this field would be a very long story indeed; yet
it is noteworthy that, at the end of that long story, the essential idea of von Neumann has
proved successful — as in several highly efficient CFD schemes for compressible-flow Euler

equations in the development of which another fine Princeton innovator, Anthony Jameson,
played a crucial role. These advanced schemes, now used throughout the aircraft industry,

incorporate an enormous range of different special features. Yet the feature essential for

shock capturing is precisely a modern form of artificial viscosity [23], adapted admirably to
meet conditions (i) and (ii) above in flow fields of all the diverse types that can arise in

particular aeronautical applications .... And, needless to say, such numerical schemes have

also become specially important sources of knowledge in all areas of the field at the end of

our ‘century of shock wave dynamics’.
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