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acoustic source in proximity to a pair of widely spaced sensors, the
conventional cross correlation method results in poor time delay estimates because the signal
received by each sensor experiences a different degree of time scaling. The correct procedure
for time delay estimation in this case is to match the time scales of the two received signals,
prior to cross correlating them. In practice, the relative time scale between the two signals is
not known a priori and hence it must be estimated jointly with the time delay. This can be
done by evaluating the passive wideband cross-ambiguity function. Four different methods are
described for computing this function. The most efficient method is applied to synthetic
acoustic data which simulate the outputs of three widely spaced microphones during the low
altitude transit of a jet aircraft. The resulting time delay estimates are used to calculate the
angular trajectory of the aircraft during the transit.

1. INTRODUCTION

The differential time of arrival of an acoustic signal at two spatially-separated sensors can
be estimated by cross correlating the sensor outputs [1]. However, when a signal source
undergoes fast motion in proximity to a pair of widely spaced sensors, the estimate of the
differential time of arrival (often simply called time delay) is in error because the time scale of
the received signal is different for each sensor [2-3]. Time scaling, which corresponds to
compression or expansion of the signal’s time base, is a manifestation of the Doppler effect
and so, when a moving source approaches or recedes from a stationary sensor, the received
signal appears to be a time compressed or expanded version of the emitted signal. Though the
effect of relative time scaling (often referred to as differential Doppler) may be reduced by
using a smaller integration (or observation) time for the cross correlator, in many cases, this
simple expedient results in an unacceptable reduction in processing gain and hence poor time
delay estimates. The correct procedure for time delay estimation in the presence of differential



Doppler istomatch thetime bases of thetwo received signal waveforms (for instance, by
expanding the time base of the more compressed waveform), prior to cross-correlating them.
Since the relative time scale between the received signals is not known a priori, it must be
estimated, along with the time delay.

This paper considers the use of the passive wideband cross-ambiguity function for the joint
estimation of the relative time scale and time delay. Four different methods are described for
computing this function. The most efficient method is applied to synthetic acoustic data which
simulate the outputs of three widely spaced microphones during the low altitude transit of a jet
aircraft. The resulting time delay estimates are used to calculate the variation with time of the
azimuth and elevation angles of the aircraft during the transit.

2. SIGNAL MODEL

For a moving source, the outputs of a pair of stationary sensors, labelled 1 and m, can be

represented locally over a short time interval 6 by [4]

YI (0 = do + ~1(~) for ltl<~ (1)

[)t–Pml
Yrn(t) = Pzl s + nm (t) for lt–~m11<i5 (2)

ctml

where s(t) is a broadband signal emitted from the source, n 1(t) and rim(t) are additive noises for

the respective sensors, RI and ~ml are the relative time scale and time delay between the two

sensors respectively, and pml is an attenuation factor. It is assumed that s(t), nl (t) and nJt)

are stationary and mutually uncorrelated.
Note that Eqs. (1) and (2) are valid for different time intervals which may or may not be

(partially) overlapped depending on the actual source-sensor geometry. This has important

implications on the processing requirement. When ~ml is small compared with 5, the joint

estimation of WI and ~ml simply requires observing the outputs of the two sensors over the

same period of time [– T1/2, T’l/2], where ~21 << T1/2 < ~, This is the case that has been

considered in the open literature. However, when the spacing between the two sensors is very

large, it is likely that ~ml > & especially when the signal is emitted from the source near the

endfire direction. In this case, the joint estimation of cxml and &l requires the observation

time interval for sensor m, [– Tm/2, T~ /2], to be sufficiently larger than that for sensor 1,

[– ~ /2, ~/2], so that the signal given by Eq. (2) is included in the observation. The upper

bound on the extra observation time required for sensor 2 is simply twice the maximum time

delay between the two sensors, that is, 2max{ ~ml } = 2dw11c, where dml is the sensor spacing

and c is the speed of sound.

3. PASSIVE WIDEBAND CROSS-AMBIGUITY FUNCTION

The relative time scale and time delay txml and ~ml are estimated jointly by evaluating the

passive wideband cross-ambiguity function defined by

A~~yl(~~~) =@~~yrn(t)y:[~ (t-~)]dt, CT’>0

where z and a’ are the time delay and time scales variables

complex conjugation. Under the change of variables O’ + 116,

(3)

respectively, and * denotes

the passive wideband cross-



ambiguity function is equivalent to the continuous wavelet transform of y~(t) with respect to

the mother wavelet yl(t), that is

Wylym(T,a)= #“ym(t)y:(:)dt, 0>0. (4)

The limits of the continuous wavelet transform’s integral are from -- to CO,but for the
present application, yw(t) and yl(t) are essentially time-limited to [– T~ /2, T~ /2] and

[-~ /2, ~/2] respectively, where T~ = T1 + 2d~11c. Thus, the practical implication of

employing Eq. (4) is that it will be applied to two signals with different durations and needs to
be computed only during the time period [– GT1/2 + Z, cr~ /2 + ~]. The finite observation time

T1 is bounded above by 25, which ensures the signal model is valid. It is bounded below by

the condition [3] that the correlation times of the signal and noise are much less than T1 so

that the time correlation IVY1ym(z, 6)/(6 T1) gives a useful approximation to the ensemble

average over the noise and signal distributions when o matches the relative time scale ct~l.

In practice, WY,y~ (~, o) is evaluated at discrete values of ~ and 6 using samples of y, (t)

and Yin(t) as follows:

~y,yt@”qJ = [)1 ~yJkT~)y: aT~ , 0,>0
fs@- ~ ‘P

(5)

where p, q, k are integers, f~ is the sampling frequency and T~= llf~. The estimates of ~~1 and

ct~l are given respectively by the values of qT~ and Op that maximise

dimensional grid search is performed to obtain the global maximum.

4. COMPUTATION METHODS

4.1. MULTIRATE SAMPLING

~ylYrn(q~.,CTp) . A two-

The time-scaled replicas yl (kT~/crp ) can be created from yl (kTJ using the multirate

sampling method [5]. The time scale value 6P is written as I/D, where Z and D are positive

integers. To change the sampling rate of the signal from f$to oJ~, the sampling rate is first

increased to If,by adding (1-1) zeros between each pair of signal samples {y, (kTJ,

Y1[(k+l)TJ}>thentheresultant signal iS PaSSed through a low PaSS filter for anti-imaging and
antialiasing, and finally every Dth sample of the filter output is selected. To improve the
computational efficiency, multistaging [5] is often used. This requires decomposing 1 and D
into products of prime numbers and using multiple lower order low pass filters.

For a given time scale value 6P, Eq. (5) indicates that WY,y~ (qT,, CJp) is a discrete (linear)

correlation of yJkTJ and yl (kT~/cJ p ), which can be computed using the fast Fourier

transform as follows. Assume yl(kTJ has a length of L1 (-L1/2 S k < L1/2- 1) and yJkTJ has a

length of Lm (-LJ2 S k S LJ2- 1), where L1, L~ are even and L1 e L~. The length of the fast

Fourier transform, M, is chosen to avoid circular correlation, that is, M is a power of 2 such
that M 2 ~ + ~ max{op }– 1. The sequences ym(kTJ and yl (kT~/ap ) are first padded to the

same length M with the appropriate numbers of zeros. Then the fast Fourier transform of



YJ~~J is multiplied W theCOIIIPleX conjugateOf the fast Fourier transform Of Y1(kT./oP ).

Finally, the inverse fast Fourier transform of the resulting product is divided by ~, ~.

4.2. DISCRETE FOURIER TRANSFORM INTERPOLATION

A simpler way to create time-scaled replicas yl (kT’/oP ) is to interpolate y] (kT,) using the

discrete Fourier transform which does not require any low pass filter. In this method, the time
scale values are limited to 6P = (Ll + p)/L1 , where L1 is the length of the sequence yl (kT,)

and p is an integer multiple of 2. Let Y1(k) be the discrete Fourier transform of yl (H’,),

–~/2<k S&/2–l.

(a) Time base expansion (dilation)

For 6P >1 (p> O), p/2 zeros are appended to each end of Yl(k), which effectively increases

the sampling rate from ~~to o ~~~. Taking the inverse discrete Fourier transform of the zero-

padded spectrum and multiplying the result by CTP gives YI (w,/~p ) ,

-(L1 +p)/2<k S(L1 +p)/2 -l.

(b) Time base compression (contraction)

To avoid aliasing, the new sampling frequency aP& must be at least twice the signal

bandwidth B1, that is, OP~~ 22B1, and this places a lower bound on OP. For example, if j. =

41?1, the lower bound on 6P will be 1/2, which is good enough for most applications as the

relative time scale is seldom less than 1/2. For 1/2 e OP c 1 (–Ll /2 < p < O), L1 /2 + p zeros

are appended to each end of Yl(k), which effectively increases the sampling rate to 2cT~~,.

Taking the inverse discrete Fourier transform of the zero-padded spectrum and multiplying the
result by 20P yields Y1(k~./2~p ) t –(< + p) S k S (~ + p) – 1. Retaining one for every two

samples of yl (kT’’/26p ) gives yl (kT./crp ), -(L1 + p)/2 < k S (L1 + p)/2 -1, with the

sampling rate of yl (t) now effectively being o p~~.

Having obtained the time-scaled replicas yl (k7’’/oP ), WY1yw (qT$, crp) is computed for

each value of CTpusing fast correlation via the fast Fourier transform.

4.3. CHIRP-Z TRANSFORM

Using Parseval’s theorem, Eq. (4) can be written as

(6)

where Y#) is the Fourier transform of y~(t) for n = 1,m. Evaluating Eq. (6) at discrete values

ofz=qT~and o = a p >0, and approximating the integral with a finite summation gives

(7)

where Y&(kjfs/M) are the samples of the discrete-time Fourier transform of Y.(O defined by



‘i(f) =~Yn(kT’)e-j2~’ . (8)

In

in

k

Eq. (7), M2Lm+~max{oP }-1 ischosen toimplement thelinear correlation indicated

Eq. (4)rather thmacirculm comelation; usually, Mischosen to bea power of 2. Given

yd~(v~ and y~l (GPJ#~/M), Eq. (7) can be computed efficiently using an inverse M-point

fast Fourier transform.

YdJW@4) is obtained by padding each end of yJkTJ with (A4-LJ2 zeros, followed by an

M-point fast Fourier transform. The scaled wavelet spectrum, Ydl(cP@$ /A4), is computed

using the chirp z-transform as suggested in Reference [6]. The computation time of the chirp
z-transform is only a few times longer than that of an M-point fast Fourier transform.

4.4. CROSS-WAVELET TRANSFORM

WY,ym (~, 6) can also be evaluated using the cross-wavelet transform [5], that is,

(9)

where Wgyn @, a) is the continuous wavelet transform of yn(t) with respect to an arbitrarily

chosen mother wavelet g(t) (n = 1,m) and Cg is the admissibility constant. The continuous

wavelet transform of Wgyn (b, a) is defined by

(lo)

where a and b are the time scale and time delay variables respectively, and both a and b can be
positive or negative. Usually, the mother wavelet g(t) is complex so that the resulting
continuous wavelet transform, Wgyn (b, a), is also complex. If g(t) has a real spectrum, then

for real signals yl(t) and y~(t), it can be shown that Eq. (9) can be written as

(11)

where Re[ ] denotes the real part of the bracketed quantity. Eq. (11) can be evaluated at

discrete values of ~ = qT~ and a = CJP>0 by approximating the double integral with a finite

double summation. It is clear that a two dimensional interpolation is required (to obtain the
second term of the double summation) for every value of (sP.

4.5. COMPARISON OF DIFFERENT METHODS

In the multirate sampling method, the time scale values OP are of the form I/D. The crucial

issue of this approach is the design of the multistage low pass filters. Efficiency can be
improved by optimizing the order of the filter at each stage. However, if a fine time-scale
increment is required, the interpolation factor 1 and decimation factor D will be quite large,
and consequently, many filters are needed. This is often impractical. In addition, creating each
of the replicas yl (kT~/6 ~) requires a new set of filters. Consequently, this method is

computationally intensive even for moderate time-scale increments. Another problem with



this method is that the low pass filters will introduce time delays to each replica yl (kT~/oP ),

and these must be compensated for when estimating the differential time of arrival.

With the discrete Fourier transform interpolation method, the values of 6P are limited to

(~ +p)/Ll > 2B1 /f~ . A smaller time-scale increment requires a longer sequence of y, (kT~),

that is, a larger LI. However, the largest value of LI is limited by the sampling frequency and

the maximum observation time over which the signal model remains valid. Though this
problem may be overcome by padding yl(kT~) with zeros to increase the effective signal

length, the cost of computing the discrete Fourier transform increases with LI. Therefore, this

method becomes less efficient for very fine time-scale increments (s 10q ). Nevertheless, for

time-scale increments on the order of 10-3, or larger, this method is the most efficient.
The main advantage of the chirp z-transform method over the previous two methods is that

the time scale values OP are arbitrary and so very fine time-scale increments can be achieved

without increasing the system complexity or the signal length. The efficiency of this method
relies on the computational cost of the M-point chirp z-transform which is only a few times
larger than that of an M-point fast Fourier transform. Consequently, for time-scale increments

of the order of 10-3, or larger, this method is less efficient than the discrete Fourier
interpolation method but it is more efficient than the others.

With the cross-wavelet transform method, the processing is performed in the wavelet
domain. Although this method bypasses the need for multirate sampling, it is computationally

very intensive as a two dimensional interpolation is required for every time scale value OP.

To conclude, the discrete Fourier transform interpolation method is the most efficient
method to compute the passive wideband cross-ambiguity function for the joint estimation of
relative time scale and time delay unless the required time-scale increment is too fine
(s IOA ), in which case the chirp z-transform method is recommended.

5. COMPUTER SIMULATIONS

A series of computer simulations were carried out to study the joint estimation of the
relative time scale and time delay using the passive wideband cross-ambiguity function. The
discrete Fourier transform interpolation method, chirp z-transform method, and cross-wavelet
transform method were each used to compute the function for a variety of signal-to-noise ratio
scenarios, for both small and large time delays, and for various relative time scales. In each
case, the same results were obtained for all three methods. Assessing the computation time for
each method used in the simulation verified that the discrete Fourier transform interpolation
method was the most efficient for the given time scale resolution, followed by the chirp z-
transform method. Moreover, the cross-wavelet transform method was found to be so
computationally intensive that it was considered unsuitable for practical applications.

5.1, ANGULAR LOCATION OF JET AIRCRAFT

Synthetic acoustic data were generated, which simulate the outputs of three sensors
(microphones) during the low altitude transit of a jet aircraft. The three sensors, labelled 1,2
and 3, were located on the x-y plane at (0,0), (-25m,0) and (0,-25m) respectively. The jet was
in level flight with a velocity of 300 knots parallel to the -y axis. It experiences a closest point
of approach to sensor 1 at a range of 1000 feet, and the signal emitted from the jet at this time
instant arrived at the output of sensor 1 with a signal-to-noise ratio of O dB, The sampling
frequency is f,= 2 kHz and the speed of sound in air is c = 340 ds. The data were divided



into overlapped blocks and then processed so as to produce 25 observations per second, with
the frequency range of interest being 100-300 Hz. The length of each data block (observation
time) is T] = 0.34s for sensor 1 and Tm = 0.487s for other sensors.

The data were first processed using the conventional cross correlation method. Since the
relative time scale between sensors 1 and 2 was close to unity, good time delay estimates were
obtained for this pair of sensors. On the other hand, the time delay estimates for sensors 1 and
3 were poor because their relative time scale differed significantly from unity.

The same data set was then processed by evaluating the passive wideband cross-ambiguity
function using the discrete Fourier transform interpolation method. The time-scale increment
is about 0.0088. Good time delay estimates were obtained for both pairs of sensors (1,2) and
(1,3). Figures 1 and 2 show the estimates of the time delay and relative time scale between
sensors 1 and 3, together with the actual values, as a function of time respectively. The time
delay estimates for both pairs of sensors were used to calculate the variation with time of the
elevation and azimuth angles of the aircraft using a far-field approximation, and the results are
shown in Figure 3 and 4 respectively. The discrepancy between the actual and estimated
angular trajectories is due to the use of the far-field approximation in angle estimation.

6. CONCLUSIONS

For a fast moving acoustic source in proximity to widely spaced sensors, the time delay
estimates obtained using the conventional cross-correlation method are poor because the time
scale of the received signal is different at each sensor location. Joint estimation of the relative
time scale and time delay between two sensors can be accomplished by evaluating the passive
wideband cross-ambiguity function (or equivalently, with a change of variables, the
continuous wavelet transform). In practical applications requiring time-scale increments of the

order of 10-3, or larger, the discrete Fourier transform interpolation method is the most
efficient to compute this function, followed by the chirp-z transform method. Both multirate
sampling and cross wavelet transfrom methods are computationally intensive and thus not
suitable for practical applications. The use of the passive wideband cross-ambiguity function
for the angular location of a jet aircraft during its low altitude transit was demonstrated using
synthetic acoustic data.
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