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The flow of granular materials on vibratory conveyors was studied
analytically. Vibratory conveyors have proved usefhl for widely differing
duties from feeding small and delicate components on automatic assembly lines
to the transportation of large quantities of raw materials. There is a considerable
descriptive data of vibratory conveyors, but for simplicity of analysis much
previous theoretical analysis only predicts the motion of a particle on a
vibrating plate. For optimum operating conditions, the behavior of granular
materials during vibration must be known. In the present work, the discrete
element method proposed by Cundall was adapted for a dynamic analysis of
vibratory conveyance of granular materials. Granular materials are f~st
assumed as ellipse models by considering shape anisotropy. Then, the contact
forces are modeled by mechanical units such as springs, dashpots and friction
sliders. It is shown that the mean velocity of transport of granular materials
depends on the fi-equency and amplitude of the vibratory input as well as
various physical parameters. The flow patterns obtained by this method appear

realistic.

1. Introduction
The vibratory conveyance of granular materials can change the flow pattern

easily by the control of the input vibratory energy and has been widely used for



many years. The behavior of granular materials subjected to vibrations has
often been investigated [1, 2], theoretically and experimentally, however, it is
not clearly understood. This fact is not surprising, since almost every previous
work has been focused on a particle’s motion on a vibrating plate.

Recently, the discrete element method has been used to investigate the

gravity flow of particles, such as the discharge from a hopper and the rock
avalanche [3, 4]. In this method, the behavior of the entire system is determined
by the integration of ordinary differential equations of motion of the individual
particles over time. In the present work, we studied the vibratory conveyance
using an improved discrete element method, in which granular materials are
treated as elliptical models by considering the shape anisotropy. It is shown that
the mean velocity for transport of granular materials depends
and amplitude of the vibrating vessel as well as on other
parameters.

2. Vibratory conveyance

on the frequency
various physical

Figure 1 shows the model of a vibratory conveyor. The vibrating vessel
undergoes translational harmonic vibrations at an angle Bto the horizontal plane.
The granular materials in the vessel are conveyed with repeated sliding and free
flight. It is supposed that the motion of the vessel is independent of the flow

pattern of the granular materials. Using the x-y coordinate system as shown in
Fig. 1, the motion of the vibrating vessel at time t, is represented by

X=acosfl sinaX, Y=asin~sind . . . (~)

where Xand Yare the displacements of the vessel and a and o are the amplitude
and the angular frequency of the vibrations, respectively. In this figure, w, y~are
the coordinates of the particle i.

3. Discrete element method using the elliptical model

In the present work, the two-dimensional motion of cylindrical bodies with

Fig. 1 Model of a vibratory conveyor
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elliptic cross sections are treated, taking into account the dependence of shape
anisotropy on the flow of granular materials. The cylindrical body of an elliptic
cross section is termed ‘ellipse particle’ in the following sections.
3.1 Contact judgement
(a) Contact between an ellipse particle and the vessel

Consider the ellipse particle i with the local coordinate Xj-Y’ as shown in Fig.
2. The major axis and the flat ratio (=minor axis / major axis) of the ellipse
particle i are 2r andp, respectively. In this figure, the broken circle has a radius
of r. An arbitrary point Ai is chosen on the boundary of the ellipse particle i. The
line normal to the ellipse curve at point AI crosses the X ‘-axis at point Si.

Assume that the vibrating vessel is shown as a line L, then the realization of
contact between the ellipse particle and the vibrating vessel is affirmed by the
following procedure. Both points Ai and Si are initially determined in such a
way that line AiSi is perpendicular to line L at point Pi. Then, the realization of
contact is confirmed by the condition that AiSi is longer than SiPi, i.e.

Fig. 4 Contact Force



(b) Contact between two ellipse particles
Consider the contact problem between two ellipse particles i andj as shown

in Fig. 3. An arbitrary point Ai is chosen on the boundary of the ellipse particle i.

The line AiSi, perpendicular to the ellipse at this point crosses the major axis at
point Si. Points Aj and Sj of particlej are determined as before. Therefore, the
two ellipse particles are taken to be in contact if line AiSi coincides with line Aj&

and the following condition holds, i.e.

3.2 Contact force
Fig. 4 shows the contact between two particles i and j. The contact force

acting on the particle i can be divided into two components, i.e. the normal force
~~ and the tangential forceJZ In order to determine the contact force, the angle
@ijbetween line the SiSj and the x-axis is considered.

WJij = (q –~.)/L] ... (q)

. . . (.5)xv –Xm)z+(yy –y.)z

The normal component of the contact force established using an elastic

spring and a dashpot is given in Eq. (6). The tangential force is given in Eq. (7),
considering the Coulomb-type friction law.

f. = PN + CNjN = kN8N + CN6N . . . (~)

f,= /JfN $Jp,l
. . . (q)

where subscripts N and T refer to the normal and the tangential direction,
respectively. tii and Uxj are the horizontal components of the velocities at the
center of particles i andj, respectively. ~Yi and uYjare the vertical components of
the velocities at the center of particles i and j, respectively. d is the
displacement, kiv is the spring constant, CN k the damping coefficient, ~ is the
coefficient of friction and the dot denotes a time derivative. It is noted that the
tension force is not considered.



It is supposed that the contact problem for cylindrical bodies with elliptic
cross sections is the same as that for cylinders in the vicinity of the contact area,
then the relation between the normal force h and displacement dN is defined
according to the Hertzian contact theory.

To obtain the damping coefficient, the contact phenomena is modeled by the
mass-spring-dashpot system with a single degree of freedom. Therefore, the
damping coefficient is expressed by [5]

2J&

‘“= JiqZjEy
““- (11)

where e is the coefficient of restitution.
3.3 Equation of motion

When ellipse particle i is in contact with particlej, the total force acting on
particle i is obtained by the summation of the contact forces, as

~m= ~(-~~ cos~~‘~~ sinr~), ‘y = ~(-f” ‘k@IJ‘.f~ Cos@U) ““” (12)
j j

in which z represents the sum over all particles “incontact with particle i.

The summation of the torque caused by the forces is given by

~ = ~~~’~, Cosbp- fN sin@p)+yAJ(jNCosbp+fT sin4,)} ““” (13)
J

where (X~~,YA~is the coordinates of point Ai in the local coordinates Xi-Y’. @pis
the angle between line Sifi and the major axis of particle i (See Fig. 3).
Therefore, the equations of translational and rotational motions for particle i are

given by
Table 1

Number of particles n= 105
Particle length 80mm
Spring constant

Particle – particle knp= 5.8X 10GN/m

Particle – vessel knw= 11.5X 10GN/m

Coefficient of friction
Particle – particle ~p=0.52
Particle – vessel P W = 0.25

Coefficient of restitution
Particle – particle e p= 0.62
Particle – vessel e w = 0.76
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Fig. 5 Flow pattern (’I’=0.Olsec, a=O.lmm)

my,= Fy, – nzg, 1~=~ ““” (14)

mass of a particle, g is the acceleration due to gravity and I is the
moment of inertia of the particle.

4. Calculated results
The computational conditions and the physical properties of the ellipse

particles for the simulation are shown in Table 1. The particles used in the
calculation are uniform in size and density for simplification during

calculations.
Fig.5 shows the effect of the angle flof the vibrating vessel on the flow

pattern of the ellipse particles. Initially, the particles are piled up evenly on the
left-hand side of the vibrating vessel. The flow occurs from left to right. The
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flow pattern is very realistic. From a comparison between Fig.5(a) and (b), the
conveying displacements of the ellipse particles appear to increase with the
decrease of the angle flof the vibrating vessel.

Figs. 6 and 7 show the relation between the conveying velocity Vii and the
amplitude of the conveying vessel. In order to examine the effect of the shape
anisotropy, three different types of particles have been considered in Fig. 6. We
define the conveying velocity J% to be

““ (15)

where Axi is the conveying displacement of the particle per second and n is the
total number of particles. As shown in the figures, the conveying velocity
increases with the increase of the amplitude of the vibrating vessel. In the case
of flat particles (p=O.64, 0.8 1), the conveying velocity is smaller than that in the
other case. The reason seems to be that the flat particles are difficult to rotate.

Fig. 7 also shows the effect of period T of the vibrating vessel on the

conveying velocity. The increasing ratio of the conveying velocity increases as
T decreases.

5. Conclusion
The vibratory conveyance of granular materials was investigated by means

of an improved discrete element method, in which granular materials are treated
as elliptical models by considering the shape anisotropy. In the case of flat
particles, the transport of granular materials is more difficult to than in the case
of disk shaped particles. In addition, it was shown that the mean velocity for
transport of granular materials depends on the frequency and amplitude of the
vibrating vessel.
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