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Abstract An actual sound environment often shows complicated fluctuation patterns
apart from a usual Gaussian type. Various evaluation procedures for the sound envi-
ronment were methodologically proposed, owing to the variety of phenomena and the
complexity of human response to them. It is very difficult to evaluate precisely the
proper characteristics of complicated systems only from a physical viewpoint based on
the structural mechanism.

In such situation, a regression analysis function is usually employed between the input
and the output fluctuations especially under the assumption of Gaussian property for the
input-output fluctuations and/or the usual least squares error criterion. Furthermore,
the extended regression analysis method which we previously reported was necessarily
reduced in a complicated mathematical form, though it could utilize the lower and higher
order correlations on the basis of Bayes’ theorem.

This paper describes a regression analysis matched to the prediction of the output
response probability for complicated sound environmental systems by introducing a hier-
archical neural network with statistical structure. Then, based on the estimated result,
the output probability can be easily predicted for the same system with arbitrary input
signal. Finally, the effectiveness of the present method is experimentally confirmed by
applying it to the actually observed data.

1.INTRODUCTION

An actual sound environment surrounding us often shows a complicated fluctuation pat-
tern apart from a usual Gaussian type. Furthermore, various evaluation procedures for the
sound environment were methodologically proposed from many different viewpoints, ow-
ing to the variety of phenomena and the complexity of human response to them. In such a
situation, it is very difficult to evaluate precisely the proper characteristics of complicated
sound environmental systems only from a bottom-up way viewpoint using physical (or



structural) mechanism. Even when confining the problem to the sound insulation system,
it is impossible to evaluate precisely the acoustic characteristics of complicated objective
systems (e.g., non-parallel double-wall type sound insulation systems, sound-bridge type
insulation systems, other actual acoustic systems, etc. ), by using the traditional structural
methods like the wave equational], the S.E.A. method[2] and the sound ray method[3]. On
the other hand, a noise evaluation index L. which is a (100 – Z) percentile of sound level
probabilityy distribution is widely used in evaluating an environmental noise. This means
that it is necessary to identify the objective system or to predict the output response
fluctuation in a form of the whole probability distribution instead of only its averaged
form.

A kind of regression analysis method is usually employed between the input and the
output fluctuations especially from a problem-oriented viewpoint of functional approach.
The standard regression analysis artificially treats the fluctuations around the regression
curve as some meaningless information [4, 5] under the assumption of Gaussian property of
the input and output fluctuations and/or the usual least squares error criterion. The usual
system identification requires the pre-experiment with the ideal input signal to predict
the output response with a different type (actual) input signal, for instance, through some
deterministic transformation based on the regression curve. However, the actual sound
environmental system cannot be exactly modeled only by using such a simple regression
analysis method owing to various environmental factors. Moreover, it should be noticed
that there exist not only linear correlation but also higher order correlations between input
and output acoustic signals. These lower and higher order correlations play an essential
role in finding the system characteristics precisely.

In the previous research, the regression analysis method was extended on the basis of
Bayes’ theorem[6], using the above lower and higher order correlation informations. This
extended regression analysis[7] results in a complicated mathematical form, though it is
strictly derived from a theoretical viewpoint. The problem is how to realize the higher
order statistics and how to utilize them in the probabilistic prediction.

In this paper, a regression analysis especially matched to the prediction of the out-
put response probability for complicated actual sound environmental systems is proposed
from two different viewpoints, by introducing a hierarchical neural network with statis-
tical structure and the practical probabilityy distribution. More concretely, in the first
method, since the regression analysis is based on the conditional probability distribution,
the conditional statistics on its distribution are constructed by use of multilayer neural
networks. In the second method, so-called Parzen-window is introduced as the joint prob-
ability density function of input-output fluctuations because of its simple form and the
conditional probability density function with respect to the output response is estimated
on the basis oft he Bayes’ theorem. Then, based on the estimated result of sound environ-
mental systems, the output probability can be easily predicted for the same system with
arbitrary input signal. Finally, the effectiveness of the present method is experimentally
confirmed by applying it to the prediction problem of output response in the actual sound
environments.



2. INPUT-OUTPUT RELATIONSHIP
IN A COMPLICATED SOUND ENVIRONMENT

Let us consider an actual case when a response variable y depends on the independent
variable z fluctuating in arbitrary type probability distribution forms (See Fig.1). In the

Fig.1 A complicated sound environmental system with input X,

usual regression analysis, only the conditionally expected value of y can be utilized under
the definition of regression curve as follows:

j(x) = / ?@(ylx)dy. (1)

Here, the problem is how to utilize the linear and non-linear correlations between x
and g, because the conditional probability density function includes all of correlation
informations.

Until now, though theoretically strict methods were proposed on the basis of Bayes’
theorem to extract the lower and higher order correlations between x and y, and utilize
them in the prediction, most of their methods were given in a complicated mathemat-
ical form. So, it is necessary to find a new method to predict the output probability
distribution from a practical viewpoint.

3. ESTIMATION
OF INPUT AND OUTPUT RELATIONSHIP

As mentioned in the previous section, the conditional probability distribution p(y[x)
plays an essential role in predicting the response fluctuation not only in an averaged form
but also in a whole probability distribution form. As is well-known, there are some ways
to treat concretely the conditional probability distribution p(g[x).

3.1 Neural Network to Express Conditional Statistics (Method 1)

First, let us introduce the statistical Hermite expression[8] as the conditional probability
density function p(y[x) which is generally applicable to arbitrarily random phenomena,
as follows:
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where Hn (. ) denotes the n-th order Hermite polynomial. In Eq. (2), it should be noticed
that each distribution parameter is generally a function of x.

On the other hand, recently, multilayer neural networks are very often used in many
kinds of engineering fields, especially for practical use. Though many kinds of learning
methods for the networks are also proposed, most of them are fundamentally based on
the least squares error criteria (e.g., well-known back-propagation learning). This means
that the estimate from learning can be resultantly given in a conditional statistics. So,
the multilayer neural network (perception) can be adopted to express each distribution
parameterpy(z),m~(z) and an(x) in Eq. (2), as shown Fig.2.
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Fig.2 Multilayer neural network to express the conditional statistics.

A multilayer perception is a feed forward neural network that has one or more layers
of hidden neurons between the input and output layers. Several results[9, 10] have shown
that two-layer (one-hidden layer) perception with sigmoidal nodes can in principle repre-
sent any continuous function. The training of a multilayer perception very often uses a
back-propagation learning for practical use. Learnings of pv(x), a;(x) and an(z) require

training sets (x~, y~), (X~, (!/~ – PY(~~))2) and (x~~*H~( ‘k~u~$k))), respectively. Con-
cludingly, the generalized capability makes it possible to learn the complicated nonlinear
relationship between x and functions of y.

3.2 Parzen Window (Method 2)

In order to grasp a complicated non-linear relationship between the input x and output
g, a neural network of layered structure can be introduced and the back propagation al-
gorithm is used for training the networks. It is pointed out that it takes a large number of
iterations to converge to the desired solution . This section introduces the practical prob-
ability density function of input-output fluctuations for predicting the output response
probability distribution p(y) by use of the input data x.

First, the joint probability density function p(x, y) must be estimated from samples
of simultaneous observation set of x and y. Here, the estimation for p(x, y) is based on
sample value xi and g, of the random variables x and y first by introducing so-called
Parzen window[l 1] especially for practical use as follows:

zexp{-(x~:)’}exp{-(lln
P($)!/) = ~; (3)

where n and u denote the number of samples and a constant, respectively.



Equation (3) yields the desired conditional probability distribution as:

p(x, y) 1 U.lexp{-–}exp{-–}
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It should be noticed that only n sample values xi and y, lead to the complicated regres-
sion relationship between x and g . This conditional probability density function can be
applied to the actual situation with the non-Gaussian and non-linear properties.

4. PREDICTION METHOD FOR OUTPUT
RESPONSE PROBABILITY DISTRIBUTION

By use of the leaning result of perceptions for each conditional statistics in Eq. (2) or the
estimated result of conditional probability density function in Eq.(4), the objective output
response probabilityy pv (y) and its cumulative distribution function can be predicted as:

PY(Y) = < P(YIX) >Z’, (5)

Qv(Y) = /:mp Y(&)dt ‘< P(Y/x) >.’. (6)

Concludingly, the output probability distribution for the sound environmental systems
with the other arbitrary input signal can be predicted. So, we can construct the cumulative
probability distribution directly connected with an evaluation index Lx.

5. APPLICATION
TO ACTUAL SOUND ENVIRONMENTS

The proposed method has been experimentally confirmed by applying it to the com-
plicated indoor and indoor-outdoor systems. Here, our method has been employed to
estimate the system characteristics (i.e., input-output relationship) by using the input
and output data. Then, the output probability distribution for the input in a different
time interval from that for estimation process based on the estimated relationship has
been predicted.

First, we have taken two laboratory rooms shown in Fig.3(a) as the actual case of the
indoor system. The actual traffic noise radiated from the loud speaker has been used
as an input sound source. The observed level data have been measured through the
microphones 1 and 2 as an input x(t) and an output y(t), respectively. 3,000 of input-
output data have been synchronously sampled with the sampling interval of 1 sec. For
Method 1, the conditional statistics have been learned by using the first 2,000 of input
and output data. For Method 2, the number of samples has been set as 25 of input-output
data. Then, the latter 1,000 of input-output data have been divided into 5 parts and the
output probability distribution has been predicted.

Figure 4 shows a comparison of the experimentally sampled point and the theoretically
predicted curve for the output probability distribution by using the estimated input-
output relationship and the latter 200 of input data. From this result, it is obvious that
the theoretical curve agrees well with the experimental values.
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Fig.4 A comparison between cumulative probability distributions of experimentally sam-
pled points and theoretically predicted curve by use of the proposed evaluation methods
((a) Method 1 and (b) Method 2) for the indoor sound system with the road traffic noise
input.

Next, we have taken the actual building shown in Fig.3(b) as the indoor-outdoor system.
The rock music radiated from the loud speaker has been used as an input sound source.
The observed level data have been measured through the microphones 1 and 2 as an input
x(t) and an output y(t), respectively. 500 of input-output data have been synchronously
sampled with the sampling interval of 1 sec. In this case, the system has been identified
by using the first 250 for Method 1. The number of samples has been set as 25 of input-
output data for Method 2. Then, the output probabilityy distribution has been predicted
by using the latter 250 of input data.

Figure 5 shows a comparison of the experimentally sampled point and the theoretically
predicted curve for the output probability distribution by using the estimated input-
output relationship and the latter 250 of input data. The theoretical curve catches suc-
cessfully the whole shape of the experimentally obtained cumulative distribution function.
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Fig.5 A comparison between cumulative probability distributions of experimentally sam-
pled points and theoretically predicted curve by use of the proposed evaluation methods
((a) Method 1 and (b) Method 2) for the indoor-outdoor sound system with the rock
music input.

6. CONCLUDING REMARKS

In this paper, a regression analysis especially matched to the prediction of the output
response probability of complicated actual sound environmental systems has been pro-
posed by introducing a hierarchical neural network. More concretely, in the first method,
since the regression analysis is based on the conditional probability distribution, the con-
ditional statistics on its distribution have been constructed by use of multilayer neural
networks. In the second method, so-called Parzen-window has been introduced as the
joint probability density function of input-output fluctuations because of its simple form
and the conditional probability density function with respect to the output response has
been estimated on the basis of the Bayes’ theorem. Then, based on the estimated result
of sound environmental systems, the output probability has been easily predicted for the
same system with arbitrary input signal. Finally, the effectiveness of the present method
has been experimentally confirmed by applying it to the prediction problem of output
response in the actual sound environments.

Needless to say, since this research is at an earlier stage of study for the regression
analysis and probabilistic response prediction by introducing the multilayer networks or
the practical probability distribution, there remain many future problems to be solved
such as;
1) to apply the proposed method to various kinds of data in many other actual fields,
2) to investigate theoretically the proposed method in more detail and find more simplified
practical method through the approximation of this method, especially in comparison with
the traditional regression analysis method,
3) to find appropriate ways to determine the optimal order of series expansion in Method
1 and to determine the optimal parameters n and o in Method 2,
4) to reflect the actual structure of the sound environment (e.g., memory effect of the
system, etc. ) into the theory,
and so on.
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