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ABSTRACT

On-line wear detection in turning operation is considered in this paper. A wear monitoring
system based on hierarchical neural networks is suggested for this purpose. The changes in
cutting force components are used for monitoring three wear components. The hierarchical
neural network structure uses multilayered, feedforward, static and dynamic neural networks
as specialized subsystem for each wear component to be monitored. Simulation studies are
performed to investigate the overall suitability of the system.

1 INTRODUCTION

The problem of on-line tool wear monitoring in machining operations has been an active
area of research for quite some time. Tool wear has a direct effect on the quality of surface fin-
ish, dimensional precision and ultimately the cost of the parts produced. Information about
tool-wear, if obtained on-line, can be used to establish tool change policy, adaptive control,
economic optimization of machining operations and full automation of machining operations.
A reliable on-line tool wear measurement system does not exist yet and research in this area is
continuing.

Various strategies developed for on-line tool wear monitoring can be categorized as
employing either direct ,or indirect methods. The direct methods include measurement of wear
using optical, radioactive or other sensors. On-line implementation of these methods is made
difficult by the inaccessibility of the tool surface during cutting operation. In indirect methods,
the tool wear is estimated by measuring a physical property of the cutting process which is
affected by the tool wear. These include, temperature, surface finish, cutting forces and vibra-
tion. Of the indirect methods the most commonly employed is cutting force measurement [1].

The relationship between cutting force components and tool wear has been investigated by
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Fig. 1: System architecture for estimating one wear component.

many researchers [2]. It has been reported that cutting force signals are more sensitive to tool
wear than vibration or power measurements [3]. The reliability of force measurements is
another factor for their popularity in tool wear monitoring applications. However, cutting force
components are quite sensitive to the cutting conditions (feed, speed, and depth of cut). Differ-
ent methods have been suggested for separating the effects of cutting conditions from the
effect of wear on the measured force. Danai and Ulsoy [4] used adaptive observer techniques
to develop a linear observer based on a linearized flank wear model. Flank wear estimations
were good under constant cutting conditions but the system could not be used under time vary-
ing cutting conditions. This is important since an on-line tool wear estimation system should
be useful in cutting process control which is usually done by manipulating the cutting condi-
tions. Koren et al. [5] have described several methods which can be used under stepwise con-
stant variations in feed, speed, or depth of cut. However, these methods require a prior
knowledge of the initial wear, and they cannot be applied when two or more of the cutting con-
ditions are changed. Park and Ulsoy [6] extended the work by Danai and Ulsoy, by using a
nonlinear observer for estimating the state of tool wear. Prior knowledge of the initial wear was
not necessary but the system needed a continual recalibration which was done off-line using
information obtained from a computer vision system.

This paper presents a method for simultaneous estimation of multiple wear components in
turning operations by employing artificial neural networks which observe the cutting force sig-
nals. This method can deal with changes in the cutting conditions and eliminates the need for
recalibration. Static and dynamic neural networks are used in hierarchal architectures which
are based on a state space representation of the turning process. A continuous on-line training
guarantees the adaptability of the system to variations in cutting conditions and thus fully uti-
lizes the adaptability and generalization properties of feedforward neural networks. Simulation
results are presented which demonstrate the feasibility of the approach.

2 APPROACH

It has been shown that the progress of tool wear in turning process can be cast into a nonlin-
ear state space model [4]. Considering the wear components as states, the state equation relates
the rate of change of states to input variables. For a turning process input variables are the feed,



j the cutting speed, v, and the depth of cut, d. Therefore we have

;= G&y@ (I)

where W is a vector comprised of different wear components (e.g. flank, nose, and notch
wear). The cutting force components are selected as the outputs, i.e.,

[F1,F2,F3] T=Hw (2)

where F’l, Fz and 173 are different components of the cutting force. For state equation (1)
and output equation (2) to be fully determined, G and H must be identified. However, these
relations are highly nonlinear and their identification in this form is not possible. Any attempt
to simpli~ the problem by linearizing the relation will be accompanied by the loss of accuracy
and requirement for off-line calibration [6].

The above discussion was the motivation for synthesis of a neural network based wear esti-
mation system. Assume three wear components are to be estimated. Figure 1 shows a sub-
system which can be used for estimating one of the wear components, w 1. The system is
comprised of three such subsystems. Each subsystem has two hierarchal neural network. The
neural network designated as N?@ approximates the state relation,

(3)

Since this is a dynamic system, a dynamic network is formed by feedback of the output of
the network through a tapped-delay line [8]. The inputs to NN1, therefore, include cutting con-
ditions ~ v, and@) and the last estimate of the wear component w 1. The output of the network
will be an estimate for the first wear component, w 1. The second neural network in the sub-
system, NN2, approximates the output equation,

Fl=hl(fv, d)w (4)

Since this is not a dynamic relation, a static network is selected for this purpose. The inputs
to the network consist of cutting conditions, current estimate of the first wear component w 1
provided by AL?@,and current estimates of other wear components provided by two other sub-
systems. The output of the network will be an estimate of the current value of cutting force
component, J’l. The combination of the two neural networks form a non-linear observer which
attempts to estimate the non-measurable state w 1by observing the measurable output F’l.

Since states (i.e., wear values) are not accessible in the system described above, error can be
measured only at the output, ie., error in estimating the cutting force components. This means
that explicit emor signals for training AL@ cannot be generated. If the error in estimating the
cutting force was to be used to train both networks, the system would approximate only the
composition of the state and output equations and extraction of state estimates would become
impossible [8]. To overcome this problem Ni4f2is trained off-line. The data needed for training
of NN2 can be obtained relatively easily by experiment. If the inputs are chosen correctly the
generalization ability of neural networks will ensure that NAf2can work for all combinations of
its inputs.

Once ~2 networks are trained off-line, NN1 networks can be trained on-line, therefore
taking full advantage of the adaptability of neural networks. The error signal necessary for
training NN1comes from the backpropagation of the measurable error el through A?iV2.The
performance criterion for training NN1 is the minimization of the mean square of this error, i.e.,

‘rnin = Minimize (ef) (5)



To minimize this error criterion by changing the parameters of NN1 (i.e., its weights, ej), the
gradient of J and therefore partial derivatives of elwith respect to Eljare needed. Since,

‘1 = [Fl (k) ~~,ima,e -Fl (k) ] (6)

for partial derivatives we have [8],

i3el aq w ~~,ima,eaq w ~~timateMl w ,~tima,e
aej= aej = awl(k) ~~,ima,e aej

(7)

aFl ‘k) estimate 13wl (k) ~~,ima,e

‘1 ‘k) estimate
is computed by backpropagation through NN2 and

aej
is

obtained by backpropagation through NN1. Using the gradient information, the performance

criterion can be minimized by changing the weights of NN1through a training process such as
steepest descent.

When the NN1 networks in all three subsystems are trained adequately, the estimate of the
cutting force components will be very close to the actual values and since NN2 networks are
already trained, the estimate of the wear components will also be close to the actual values.

3 SIMULATION STUDIES

The capability of the proposed wear estimation system has been evaluated through simula-
tion studies. The data for simulation was obtained from [9], where three wear components
(flank wf, nose w,,, and notch Writ)were measured in relation to the cutting force components
(feed Fx, radial Fz, and tangential Fy) during the turning process. Using linear regression the
experimental data regarding the evolution of wear components with time was cast into the fol-
lowing relations,

–4 0698 0403 0.606~0.602
w ~~=wo+ 7.44x10 V“ f“ d

–4 0786 0398 0513 ~0.609wf=wo+3.83 x10 V“ f“ d

–4 0613 0467 1.004~0.627
w~t=wo+ 5.83x10 V“ f“ d

(8)

where

–3 05133 0.0059 0.0597 0.0371WO=9.3X10 v“ f i D (9)

here D is the workpiece diameter in millimeter. The relation between experimental mea-
, surement of the cutting forces and wear components were cast into the following relations

using nonlinear regression techniques,

FX = 629f 0“3d0”72+1199 (W::g – 0.023 v0”27) (W;O”& - 0.023 v0”27) (W:y – 0.023 v0’27)

FY = 1862f O“”dl”ll+ 2677 (w~~ – 0.051nv) (w~”23– 0.051nv) (W__}16– 0.051nv) (lo)

Fz = 500f 0“4Gd0”81+2377 (w~~ – 0.0071nv) (w~’26– 0.0071nv) (W~~”33– 0.0071nv)

Figure 2 shows the architecture of the system for estimation of flank, nose, and notch wear
from cutting force com orients. Equations (10) and (11) are used to simulate the cutting pro-

!’cess through time. NN in each subsystem should estimate its wear component by simply
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Fig. 2: Overall architecture of a system for estimating three wear components.

observing its relevant cutting force component. Therefore each subsystem is specialized in
estimating one component of the wear and shares this estimate with other subsystems. The cut-
ting force ratios selected for observation are F/FyF/Fyand F/FH, where Fxz=fFx2+Fz2) 1’2.

Neural networks A?Af2in all three subsystems were trained using data generated by Equation
(11). The networks have 6 input nodes, 12 hidden nodes, and one output node. The neural net-
work model used for ~2 is a feedforward network with sigmoid activation iimctions. This
implies that the output of NN2, which is the estimated cutting force components, will be in the
range {O,1}. Therefore scaling is needed and is accomplished using a linear mapping.

Measured cutting force signals will be influenced by process and measurement noise.To
account for this phenomenon in the simulation studies, noise was added to the simulated force
signal. The noise was modelled as a normally distributed, zero mean, white sequence with a
standard deviation of 1°/0of nominal cutting force [7]. Noise was also assumed to be present in
the signals for cutting speed and feed. The noise for these signals was again modelled as zero
mean normally distributed white sequence with a standard deviation of 1 and 0.01 percent of
nominal values, respectively, based upon the expected level of noise in these signals.

4 SIMULATION RESULTS

Figure 3 shows the simulation results for a particular set of cutting conditions @O.2 mm/
rev., v= 104.0 m/min., *2.25 mm). NN1 networks in the three subsystems start to learn the
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.3: Simulation of progress of nose, flank, and notch wear.

dynamics of the system from scratch (i.e, random weights). The initial estimate of wear com-
ponents is unimportant since Nl@networks, by observing the cutting forces, estimate the cor-
rect wear value. The results show that although initial wear estimates are considerably off, the
three subsystems learn the inherent dynamics of the system and estimate the three wear com-
ponents correctly. The noise present in the tool wear estimates is a reflection of the noise in the
cutting force and cutting condition signals.

The neural networks learn the dynamics of the system in approximately 6 min. This is 10’XO
of the total cutting time.. Since the initial phase of tool wear is not usually of interest (low level
of wear) this should not pose a major problem. However, the use of faster learning algorithms
such as conjugate gradient is under study to improve the initial learning time.

Figure 4 shows the situation where the cutting conditions are changed continuously. Again,

after learning the basic dynamics of the process, the system is able to adjust to continuous
changes in the feed rate and cutting speed.
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Fig. 4: Simulation results for continuous change of both cutting speed and feed rate.

5 CONCLUSIONS

In this paper a hierarchal neural network architecture is presented which acts as a nonlinear
observer for estimating wear components in a turning process. The non-observable states (i.e.,
wear components) are estimated using the outputs (i.e., cutting forces) and inputs (i e., the feed
rate, the depth of CU$ and the cutting speed). This method does not require a model for wear
mechanisms or their relationship to cutting force signal and can be used under varying cutting
conditions. The noise tolerance and generalization abilities of the neural networks ensures that
noise and changes in the dynamics of the system will be handled adequately.

The simulation results presented have demonstrated the capability of the proposed architec-
ture to estimate tool wear in turning. Estimations were found to be accurate even when the ini-
tial estimates were in considerable error and cutting conditions were changing. The system was
also able to deal with the process noise incorporated in the simulation.
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