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ABSTRCT

In the actual situation of measuring an environmental noise, it is
that only the resultant phenomenon fluctuation contaminated by an

Institute of

very often
additional

noise of arbitrary distribution type can be observed. Therefore, for the
purpose of predicting the output response probability of acoustic system with an
arbitrary stochastic input in the presence of the additional noise, it is necessary
to find some new stochastic signal processing method reflecting the effect of the
above additional noise fluctuation.

In this paper, first, a relationship between the system output excited by a
specific stochastic input of reference type and an arbitrary random input without
the additional noise for an arbitrary acoustic systems is introduced in the form
on an intensity scale. Next, a relationship between the system output excited
by an arbitrary stochastic input in the absence and that in the presence of the
additional noise is also introduced in the form on an intensity scale. Then,
based on these relationships, a new prediction method of the system output for
the arbitrary acoustic systems with the additional noise is proposed especially by
use of the observed data excited by the specific stochastic input of reference
type with the additional noise. Finally, the effectiveness of the proposed
method is confirmed experimentally too by applying it to the actual type sound
wall systems.

1.INTRODUCTION



In the actual measurement of environmental noise, the desired signal is very
often contaminated by an additional noise of arbitrary distribution type and it is
only the resultant signal that can be observed[l-3]. Therefore, for the purpose
of predicting the output response probability excited by an arbitrary stochastic
input with the additional noise, it is important to find some new signal
processing method of reflecting the effect of the above additional noise.

In this paper, first, a model of arbitrary sound system output is introduced in
the form on an intensity scale[4,5]. More concretely, a relationship between
the output response probability of an arbitrary acoustic system excited by a
stochastic input of reference type and the arbitrary random input without the
additional noise is introduced in the form on the intensity scale. Next, a
relationship between the system output probability excited by an arbitrary
stochastic input without and that with the additional noise is also introduced in
the form on an intensity scale. Then, based on these relationships, a new
prediction method of the output probability density function for the arbitrary
acoustic systems with an additional noise is proposed especially by employing
the observed data excited by the specific stochastic input of reference type with
the additional noise. Finally, the practical effectiveness of our new proposed
method is confirmed experimentally too by applying it to the observed response
data of various types of sound wall systems.

2.TEHORETICAL CONSIDERATION

First, we derive, both on the intensity scale and in the parameter differential
form, the relationship between two system outputs excited by a reference
stochastic input and an arbitrary input without the existence of an additional
noise. Next, the relationship between two kinds of system output emitted by
the arbitrary stochastic input with and without the additional noise is also
introduced by the expression of parameter differential form with an intensity
scale. Based on these relationships, we derive some new prediction method to
be able to evaluate the acoustic system output excited by the arbitrary stochastic
input in the presence of the additional noise.

2.1 RELATIONSHIP BETWEEN SYSTEM OUTPUTS EXCITED BY
SPECIFIC INPUT OF REFERENCE TYPE AND ARBITRARY INPUT
WITHOUT ADDITIONAL NOISE FOR ARBITRARY ACOUSTIC SYSTEM

Let a system output without an additional noise change from yOto y:

y= yo(l+s/s.) (1)

where yo and y denote two system outputs emitted by a specific stochastic input
of reference type and an arbitrary random input without the additional noise in



the form on an intensity scale, respectively. The E /so shows a dimensionless
deviation from a standard distribution type and is statistically independent withy.
We can express a relationship between two acoustic system responses excited by
a specific input of reference type and an arbitrary input without the additional
noise in the expression form of the probability density function (abbr. , p.d.f.) as
follows[6]:

py(y)=i(-l)/l!.(d/djz[(&.Y/%y Y) “PM(Y)].
1=0

(2)

The notation <*> denotes the averaging operation with respect to *. Here, we
must notice the fact that a random variable is changed from original yOto y in the
p.d.f. expression pyO() of yO. Also, the conditional moment can be directly
obtained as :

((=Y/d Y)= Y’/d+l).
(3)

Accordingly, after substituting Eq.(3) into Eq.(2), Eq.(2) can be easily rewritten
as follows :

Py(y)=i(-lY//!”(d/dYY[Y’/si“(+ “PYO(Y)I
1=0

= i(-ly/l!.(~z)(d/dyybyO(y). Y’/si] .
1=0

(4)

Paying our attention to the fact that the system output on an intensity scale, y
fluctuates always in a non-negative region. The probability density function
for the system output, that is, can be expressed in advance especially in the
general form of a statistical Laguerre expansion series[7] as :

(){ZPyo Y =1+ ‘~n.~,’prl)(I)pY si Pr Y;99so )
n=l

with

m, =(y)*/((y-(y))2) , so ==((y-(y))’)/(y) ,

Pr(Y;99so)=Ym0-1 ‘e -Ylsol(!lhh?)

(5)

(6)

(7)

and



Bn =ll~).n!/I@&z).(~q-’)( y/so)) ,
(8)

where L.(mo-])( *) is a Laguerre polynomial of the n-th order, and B. is the
expansion coefficient reflecting hierarchically the lower and higher order
statistics of the output intensity fluctuation.

Furthermore, Eq.(5) can be transformed into a parameter differential type
series expansion expression taking a gamma distribution function as the first
expansion term:

Pyo(Y)=~+iB;(a/asoY}Pr(Y;% d
n=l

with

B:=r(~). (- So~/r(q+fZ).(L@4)(Yo/so))

(9)

(lo)

After some
between the
as :

complicated calculation procedures, the following relationship
variable differential and the parameter differential can be derived

(why,(Y)” Y’/sil=(-lY(a/asoY Pyo(Y). (11)

Consequently, by employing Eq.(1 1), Eq.(4) can be rewritten as Eq.(12).

Py(Y)= ip” (+ “(VSOY “ Pyo (Y) .
1=0

(12)

Here, the l-th moment < s 1>can be concretely evaluated after applying the
well-known binomial theorem to Eq.( 1), as follows :

(E1)=[(y’y(y~)-~o’v{J’(l-ww’+~~ (13)

2.2 RELA~ONSHIP BETWEEN SYSTEM OUTPUTS WITH AND
WITHOUT ADDITIONAL NOISE FOR ARBITRARY ACOUSTIC
SYSTEMS

The output fluctuation on the intensity scale for the arbitrary acoustic system
can be described in the following linear form:

N+l

z=y_l_ ~LZiVi, (14)
i=l



where z and y denote the system outputs with and without the additional noise.
Here, N and ai are the system order and system parameter. Also, Vi(i=l>2>
“oo,N) and vi(i=N+l) denote the intensities of additional noises on the input and
output sides, respectively. Since the first term and the second term in the right
hand of Eq.(14) are statistically independent each other, we can obtain the
following expression :

([ 1)Pz(z)= ~ (- 1)”/n! ~ ‘~~ivi n .(d/dz)” py(z).
‘=() i=l

(15)

After substituting Eq.(12) into Eq.(15) under the above condition, it is possible
to rewrite Eq.(15) as :

%(4=Wvn!”
n=(l

([~aivi])(d/dzY{~l/z!(&l)o(a/asOYPy,(

{n=, /([&aivi])(dldzYPy(z)} ’16)= E(-lY/l!”(E~)”(d/asoy i(-ly n!
=0

Consequently, after taking into consideration a p.d.f. pZo(z,)of z corresponding to
only yO(instead of y) expressed in the same form as Eq.( 15), we directly have :

P,(z)= 51/l! “(E1)”(a/asoy pzo (z) .
1=0

(17)

Thus, we can predict theoretically the response p.d.f. for an actual sound
insulation system with an arbitrary stochastic input in the presence of the
additional noise, especially by employing the information on the system output
p.d.f. for the same system with a specific reference input in the presence of the
same additional noise.

3.EXPERIMENTAL CONSIDERATION

3.1 EXPERIMENTAL ARRANGEMENT
Figure 1 shows a block diagram of experimental arrangement in two

reverberation rooms. The speaker excites the transmission room and two
microphones receive respectively the input and output intensity fluctuations of
the sound insulation system. We have employed the actual road traffic noise
measured in Hiroshima City and the white noise as the stochastic input and the
additional noise, respectively. The transmission room has a volume of 50.2



m3 and the reception room has a volume of 24.6 m3. The aperture of the wall
between the transmission and the reception has an area of 1.74m x 0.84m.

Microphone 1

LD’”7

(Reception Room) I
Amplifier ound Level Meter 1 Sound Level Meter

Fig. 1 Block diagram of experimental arrangement.

The proposed theory is applied to three types of the sound insulation wall
systems, (a) a single wall – an aluminum panel (surface density : 3.22 kg/m2,
thickness : 1.2 mm), (b) a non-parallel wall – composed of the aluminum (at an
angle 9 degrees each other), and (c) a double wall with sound bridge –
composed of the aluminum with sound bridge (air gap thickness :50 mm).

3.2 EXPERIMENTAL RESULTS
The results of cumulative distribution function (abbr., c.d.f.) for the

prediction of the system output are shown in Figs. 2 and 3 in cases of the single
wall and the non-parallel double wall, respectively. Here, the 1st , the 2nd or
the 3rd approximations correspond to the cases of employing the 1st , the 2nd or
the 3rd terms in the above theoretical expansion expression, respectively. For
the purpose of minimizing the error caused by employing only the first finite
terms in the above irdlnite series expansion expression, some averaging
evaluation procedure can be taken as follows :

Q(Z)=QQ(Z)+(b+C)/(LZ+b+C)” Q,(z)+c/(a+b+c) Q,(z)

+1/(a+b +c)”(aeo+hl +@2), (18)

where Qi(z)(i=O, 1,2) are respectively the c.d.f. in the special cases taking the 1st,
the 2nd or the 3rd terms in the above infinite series type theoretical p.d.f.
expansion expression, and a, b and c are the arbitrary constants. Also, the
c ,(i=O,1,2) denote the errors caused by use of the finite expansion terms in cases

of Qi(z)(~=O,1,2) , respectively.



From these figures, it seems that the 1st 2nd and3rd approximation curves
don’t show an agreement with the experimentally sampled points owing to the
above error. The averaging method in Eq.(1 8), however, show a better
agreement with the experimentally sampled points compared with the other
curves.
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between theoretically predicted curves and experimentally sampledFig.2 Comparison
values for cumulative distribution function <a;ingle wall). Experim&_@lly sampled v~ues
in cases of the arbitrary input and the reference input are marked by (0) and (0),respectively.
Theoretically predicted curves are shown by {(— ): 1st approximation, (---..): 2nd
approximation, (— . —) : 3rd approximation, (— 0. -): averaging method}.
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Fig.3 Comparison between theoretically predicted curves and experimentally sampled
values for cumulative distribution function (a non-parallel double wall). Experimentally
sampled values in cases of the arbitrary input and the referenceinput are rnarkeclby (.) and
(0),respectively. Theoretically predicted curves are shown by {(— ): 1st approximation,
(.---): 2nd approximation, (—. —): 3rd approximation, (—. . -): averaging method}.



4.CONCLUSION

In this paper, the relationship between two kinds of output response
probabilities for the arbitrary acoustic system transmitted by the stochastic
reference input and the arbitrary random input without the additional noise has
been first discussed in the parameter differential form with random variables on
an intensity scale. Next, we have introduced the relationship between system
two output probability expressions excited by the arbitrary stochastic input
without and with additional noise. Based on these relationships we have
proposed some new stochastic evaluation method, without introducing in
advance any artificial error criterion like the well-known least squares error
criterion. Thus, it is possible to predict theoretically the system output p.d.f.
for arbitrary sound insulation systems emitted by the arbitrary stochastic input
under the existence of the additional noise, especially by employing the
information on the system output p.d.f. for the same system emitted only by a
specific reference input in the presence of the same additional noise.

Finally, the practical effectiveness of the proposed prediction method has
been experimentally confirmed too by applying it to the actually observed
response data in the reverberation room.

Since the present prediction method is at an earlier stage of study , there still
remain some kinds of future problems, for example, to apply it to many other
actual systems, to find a more simplified method for practical use through the
approximation of the proposed method.
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