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ABSTRACT In the analysis of architectural acoustics, the transient response in the three
dimensional room with absorbent walls is essential important. Then, several approaches are

ipresented here to treat the dissi ation and to o tin the transient response efficiently.
Although the finite element meth 0$ requires more memory in a computer compared to that of
the boundary element method, the finite element method has stronger points in some cases.
However, some physical assure tions and some mathematical considerations help to reduce
the required memory, which m$ es a way to such an analysis as is on an auditorium. So, the
choice of the combination of them is essential, especially in the analysis on a huge system.
To make the point clearer, several computations are carried out. With the results, the
characteristics of them are discussed.

1. INTRODUCTION

Numerical methods, ~ finite element method and boundary element method, are broadly
used in the research and engineering of acoustics recently. In the field of architectural
engineering, the complexity of a room’s geometry, or the boundary conditions, have made
acoustical investigations hard to be carried out. The computational method like finite element
method would be a help to overcome such difficulties and make a way to perform acoustic
studies of rooms with complex boundary conditions.

A major part of the paper is concerned with the application of the finite element method
to study the transient response of rooms with absorbent boundary conditions. At first, basic
treatments are summarized in brief. Secondly, several approaches to obtain the sound pressure
are presented. Then some discussions including the number of freedoms to be used in the
anal ysis are presented. Finally, some computed results are compared with the measured
values to see the accuracy of the methods.

2. THEORETICAL DESCRIPTION

2.1 Basic Formulae The following discrete formula of the sound field with absorption can
be obtained by using the energy principle’) 2)



Or, using velocity potential and velocity of driving force, equation (1) can be in the form of

M{i}+rcl{ i}+rm{@}=-v {w. (2)

Here, according to the ordinary finite elemental procedure, sound pressure at an arbitmry
point in an element “e” can be approximated to be
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While, assuming the locally reactiveness at the wall’s surface, the dissipating matrix can be in
the form of.

‘//[C~m=$ ~ {h9T{N} dxdy

e“
(5)

Here, Z. in equation (5) denotes the normal acoustic impedance ratio at the wall’s surface.

2.2 Absorbent Finite Element In equation (5) the dissipation is modeled using the
acoustic impedance. The other way to denote the dissipation in the system is to use some
absorbent finite elements. One which ~presents a rigid porous material was given by Craggs3)
using the generalized Rayleigh model;
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Combining these elements into equation (1) and solving it, the acoustic response in a room
with absorbent walls can be obtained.

3. TRANSIENT RESPONSE

In the studies of the architectural acoustics, the investigation about the transient response, like
echo time pattern, may usually be important. Several methods can be applied on equation (1)
to obtain the transient response. In the former papers, the following methods have been
presented: step by step integration method (SS1)2), modal analysis(Modal)4)s , and impulse
response with inverse Fourier transformation (IR-IFFT)G).

3.1 Step by Step Integration Method (SS1) If the acceration term in equation (1) can be
assumed to change linearly, the sound pressure @} can be in the form of
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In the following analysis, the value of p is substituted by 1/6 [Linear acceleration method], or
.–,

by 1/4 [Constant acceration method]. SS1 can be applied to a system the conditions of which
varies as time changes. In the method there is no need to take care about window functions.
On the other hand, it is not suitable for the parallel processing because of its algorithmic
nature. And the detailed frequency dependency of absorbent conditions are not easy to be
involved into a computation. While, if the frequency dependency of the dissipation can be
assumed to be constant, such is the case in a narrow band analysis, SS1 can be applied
successfully and simply enough.

3.2 Modal Analysis (MIR-IFIW) If the modal coupling caused by the dissipation in the
system can be assumed to be small enough, the following modal analysis4)5)can be applied.

The steady state solution of equation(1) for the sinusoidal excitation of frequency w can
be obtained by

*}= ~ an{h}

Here,
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w. and {@n}are obtained by solving the following eigen equation:
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Let all the modes excited by an impulse at z=Obegin tQ dissipate exponentially from z=O, the
modal amplitude, % can be

here,

{i= {w} W)

(12)

(13)

Then, the transient response, after the steady state, ~ all the modes have been excited, to an
arbitrary external excitation can be derived by applying the convolution to the steady state
solutions with frequency CO’S.This procedure basically corresponds with the equations derived
through different way by Cmggs’), and by Easwaran and Craggsa. This method can clarify the
relationships between acoustic characteristics and modal distribution of a room efficient y
when the absorption on the walls are equally distributed and are small enough, or the equation
is close to a singular condition.

3.3 IR-IFFT Let the external force term in equation (1) be an impulse, th~n the response
in the frequency domain can be derived by solving the linear matrix equation m case it is not
singular. When the external force term is unit velocity, the response sound pressure can also
be regarded as the input impedance at the driving point and as the transfer impedance at the
other points. Craggs3) showed the accuracy of the computed impedances in two dimensional
absorbent materials by the method. With the impedance, the transient response to an arbitrary
external driving force (sound) can be obtained using the convolution technique. Furthermore,
with the impedance, the transfer functions between arbitrary two points in the sound field can



be calculated easily.
By the method, the frequency characteristics of absorbent materials can easily be

involved in the equation. In addition, as the matrix equations in the frequency domain are
independent each other, the method is suitable for the pamllel processing. Several example
applications are shown below.

4. FREEDOMS IN THREE DIMENSIONAL ANALYSIS

The finite element method is usually said to require huge amount of computer memory
especially when it is applied to a three dimensional analysis. Here, the required freedoms in
the finite element analysis is discussed using a simple room with rectangular shape and with
equaled finite elemental mesh division to show the difference with that of the boundary
element method.

Let N be the total amount of the freedoms in the system, then [~, [Cl and [Kl in
equation (1) are symmetric matrices of order N x N . Here, let us denote the total element
number, N x N , by T. In the analysis of sound field in actual rooms, [ikfJ and [Kj are real
sparse-band matrices. Usually the former is positive definite. While, [q is usually a complex
sparse-band matrix. The typical finite elements used in the acoustics field are shown in Fig. 1.
To make the points in the following discussion simpler and clearer, the 8 node and 27 node
isopararnetric elements are individual y employed. Here, n., A and N are the numbers of node
in x, y and z direction respectively. Then N can be

IV=nxnYnz (14)

In a simple equal mesh division, the band width N,, N,, for 8 node element and N~,, for 27
node element, on a typical case considering the symmetricity, become

~b8=7kny+(?Zx+ 2), ~b27=2?kny+(2k+3) (1s)

Then the total numbers of matrix element for a band matrix, T,, can be

(16)

Fig. 1 8 node (E%: Left), 20 node (E20: Center), and 27 node (SE27: Right) isopararnetric finite elements
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In order to simplify the discussion, we let equal nx, ~ and nz to m, then the order of T becomes
O(rZ’)and that of T, becomes O(n’). The comparison is shown in Fig.2. There, Tk represents
that of a simple boundary element method with the same mesh division. In general, matrices
in boundary element method are full and unsymmetric. Fig.2 shows that the ratio, R, of TJTti
is 3.0 for E8 and is 5.6 for SE27 at nz = 100, the ratio is in proportion to the increase of n=, as
is shown in Fig.3.

5. APPLICATIONS AND DISCUSSIONS

5.1 Methods’ Combination Using several combinations of the methods, sound pressure
response in a tube with a porous material (thickness = 0.1 m) on a wall (Fig.4) are computed
to be compared. The combinations areas follows;

(#) (Solver) + (Absorption Treatment) : (symbol)
------------------------------------------------------------------------------------------------------

#1. SS1 + Absorbent finite element : SSI(eJ
#2. SS1 + Normalized acoustic impedance (at surface) : SS1(2)
#3. IR-IFFT + Absorbent finite element : IR-IFIT(eaJ
#4. IR-IFFI’ + Normalized acoustic impedance (at surface) : IR-IFFT(Q
#5. Modal + Normalized acoustic impedance (at surface) : Modal

The normalized acoustic impedance at the surface of the material is computed by the finite .
elemental procedure to examine the accuracy of itself. The results are shown in Fig.5
compared with the anal ytic solution), which shows good agreements. With the satisfactory
result, the impedance values obtained in this way are used in the #2, #3, and #5.

The sound source is assumed to be located on the wall at x=O, and to be a tone burst
filtered through Hamming-window to have 12 waves and 1000 Hz centered frequency. Fig.6
shows the comparison of #1 ,2,3 and 4, on the condition that the absorption coefficient of the
wall at x=O is assumed to be 1 (that of air). Fig.7 shows the comparison of #l-5, when the
absorption coefficient to be O (hard). As the absorption is not distributed equall y, the result by
Modal shows some differences. In #2, however. the immdance was given only one value at

6.0

z
3.0

0.0
lm

-3.0

0 1000 2000 Freq~z] ~

Fig.4 Geometry of Tube

1.00

0.50

0.00

-0.50

-1.00

Fig.5 comparison of computed im*ee; FEM (*) Vs
Analytic solution (-), R~ –10000 RayIs/m, K,=l, Q=l

1.00 Ii 1 I I I I

0.50

0.00

-0.50

-1.00

*

v‘ ITT

p -- ---Refke tethwtvef,. –-––>-
1 I I I I I I I I I I I

5 10 Time [msec] 20 2s 5 10 Time [resee] 20 25

— SS1 — IR-IFFT(z) — SSI(eab) — IFMFIT(eab)
— IR-IFIT(eab) — by Modal

-- Analytic
551(Z) -- IR-IFFT(Z)

Fig.6 Comparison of computed wave forms. Fig.7 Corqxuison of computed wave forms.

A, =o =1 , R=tiI = 10000 Rayls/m z., a = infhity, R- = 20000 Raylslm



Table 1 Frequeney distribution, P(%), of K,

Fig.8 Geometry of a reverberation room
(Volume 188m3)
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Fig.9 Compiuison between computed and measured
sound pressure in the reverberation mom. (80Hz)

1000 Hz, the results show good agreements, because of the limited frequency components of
the sound source.

5.2 Modal Analysis of a Reverberation Room At first, the modal coupling is investigated
by calculating the frequency distribution of the ratio of diagonal elements to non-diagonal
elements, K.. The investigation was carried out on the analysis of a reverberation room (Fig.8).
The absorbent condition was determined through the following procedure.
1. Averaged sound absorption coefficient, ii-, was obtained by the reverberation time
measurement.
2. With G- normal acoustic resistance, yn,was obtained assuming the locally reactiveness.
3. Assume G equal to y., and apply it to equation (5).
Table. 1 shows that more than %% of non-diagonal elements are less than 0.1 times the
diagonal element in {$.}’[Cl{@n}. The computed steady state sound pressure distribution in
the reverberation room is compared to measured values in Fig.9, which shows that the
tendency of them agree well. Hem, the one third octave band with the centered frequency of
80 Hz is assigned to the settings in this computation.

5.3 IR-IFFT Analysis of a Lecture Room To examine the difference between IR-
FFT(eJ and IR-FFT(z.) in the three dimensional computation, the echo time pattern
distributions in a lecture room ( 7.2 m x 3.6 m x 2.7 m) with a glasswool (thickness = 0.025
m) on a side wall are computed. Here, the sound source is located at (O, O, O), and is a
Hamming windowed tone burst with the centered frequency of 200 Hz. Fig. 10 is the
comparison of them on the 1.08 m high section plane. To clarify the similarity, scatter
diagram of the echo time patterns at the Node (7, 6,3) is shown in Fig. 11. Its coefficient of
correlation, r, is 0.993, and the mean value of r all over the room is 0.997. Then it can be said
that the two ways of absorption modeling give almost the same results in this case.

5.4 IR-IFFT Analysis of a Scale Model Room with a Barrier To examine the accuracy
of the IR-IFIT, the computed transfer functions in a scale model room (Fig. 12) was compared
with measured values. The room is the 1/5 scale model of the lecture room used in 5.3. The
absorbent condition in the room is as follows.

C-1: Painted plasterboard
C-2: C-1 + a thin carpet on the floor
C-3: C-2+Glasswool(25K, thickness =0.025 m) on the end wall

The impedance value of the C-1 is decided in the same process as 5.2, and those of the other
materials are measured by the two microphone method in an impedance tube. The computed
and measured transfer functions are compared in Fig. 13. As the assigned impedance value for
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the plasterboard was too simple to model the complex absorbent characteristics, the computed
transfer functions do not agree very well around the eigen frequencies on the condition C-1.
In other cases, however, good agreements can be seen; especially the measured values
averaged in the 1/24 octave band by using digital filter agree well with the computed values
on C-3. In Fig. 14 the sound pressure distribution computed by the method is shown to give an
example. It shows the changes caused by the absorbent conditions clearly.

6. CONCLUSIONS

Several combinations of methods to get the transient response of the sound field in rooms
with absorbent walls have been presented above to show the following results: the modal
analysis can be successfully applied to the analysis of a reverberation room, the modal
coupling in the analysis could be regarded small enough, the dissipation matrix using the
acoustic impedance gives almost the same result as the absorbent finite element in the cases,
and the transfer functions computed by the method showed good agreements with the
measured values. As the absorption considered above are simple porous materials only,
further research is needed to refine the process and on the treatment of other kinds of
absorbent materials.
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SYMBOLS
c u : velocity of sound in air

i :fl v : particle velocity

Ks : stracture factor z : normalized acoustic impedance

p : sound PIEWlfe tit) : Kronecker’s Delta function

R : resistivity @ : velocity potential
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