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ABSTRACT

The prediction of resonance frequencies and mode shapes of distributed structures requires
high convergence rate and accuracy. When approximated methods, such as the Rayleigh-Ritz
method, are used, these requirements are largely dependent upon the base functions used to
express the mode shape functions. This paper shows that while base functions selected to
satisfy all the boundary conditions of the structure, their linear independency may be reduced.
This will results in ill conditioned mass matrix in the generalised eigenequations (large matrix
condition number) and prediction error. On the other hand, the base functions with good
linear independent property may not satisfy part of the boundary conditions. This paper
propose the use of adjustable base functions to allow the selection of the base functions
capable of satisfying the all boundary conditions and keeping the condition number of the
mass matrices sufficiently small. As a result, the two requirements can be simultaneously
satisfied.

INTRODUCTION

The vibratory characteristics of a distributed structure can be predicted using approximated
methods such as Rayleigh-Ritz method. These methods often involves the use of base
functions to represent the mode shapes of the structure. The prediction accuracy is related to
the property of the selected base functions. Previous study shown that the prediction error and
low convergence rate may be found if the base functions only satis~ some of the boundary
conditions. Efforts have been made to use a combination of two sets of base fimctions to
achieve a fast convergence rate. One set satisfies the boundary conditions of displacement and
another satisfies the boundary conditions of force.

The longitudinal vibration of a beam of L in length and with one end fixed and the other
attached to an elastic spring of stiffness K can be used as illustrating example. If the
eigenfunctions of the fixed-free beam sin[(2i – l)ZX / 2L] ( i = 1,2,... N ) are used as base
functions, the boundary condition of the force at the spring end will never be satisfied. As a



result, the convergence rate in calculating the resonance frequencies and mode shapes will be
low. If two sets of base functions, such as eigenfunctions of fixed-free and fixed-fixed
beams, are used, the boundary condition for the spring force can be satisfied by the linear
combination of these functions. Therefore a high convergence rate was achieved in the
prediction. High convergence rate indicates the use of small number of base functions and
reduced computational effort.

The problem of using two different sets of base functions is that they may be linearly
dependent in Os xs L as the number of the functions increases. The linearly dependent
behaviour of base functions may produce singular mass matrix in the generalised
eigenequation obtained form the Rayleigh-Ritz method. As a result of this singularity, the
prediction of the system eigensolutions and response may not be accurate. To reduce the
singularity, a set of adjustable base functions is used. The adjustable base functions are a set
or several sets of base functions with an adjustable parameter. In addition to satisfy all the
boundary conditions, a suitable selection of the adjustable parameter may make the mass
matrix of the eigenequation less singular. Consequently, a high convergence rate of the
prediction can be achieved and sufficient accuracy of the prediction can be obtained with small
number of base functions.

DESCRIPTION OF THE SYSTEM MODEL

The idea of adjustable base functions is illustrated by solving the eigenvalue problem of a
simple system shown in Fig. 1. However, this idea can be extended to more complicated
structures, as the selection of suitable base functions is the common concern of many
structural dynamic problems. The differential equation and boundary conditions of the system
shown in Fig. 1 are:

d=u—=–AZC1, O< X<L,
dx=

(1)

du
Ulr=o= 0, AE— = –KEulX=~

dx .=.
(2)

where u and L are respectively eigenfunction and eigenvalue of the system. A, E and L
are respectively the cross section area, Young’s modules and length of the beam. The exact
eigenvalues and eigenfunctions of this system can be obtained analytically and used for
comparison with that from the approximated methods.

~ L~
Figure 1. The beam model.

The approximate eigensolutions of the system described by Eqs. (1) and (2) maybe obtained
by rendering the Rayleigh’s quotient stationary. The Rayleigh’s quotient can be defined as:

R(u) =
[U,u]

(JzVlzl)
(3)

where [u, u] represents the energy inner product. In this case:

[fwl= jEA(’Jdx+Ku2(L).

o

(4)

(6zu,6u) is the inner product of ~u with itself. For this case, ~ = @ and



(fiu,fiu) = ~pAu2dx . (5)

If W.(x), n = 1,2,... N ;e the base functions, mode shape function u can be expressed as:

U(N)(X) = ~a.p.(x). (6)
n=l

The coefficients al, q,... aN can be determined from the conditions for the stationarity of
Rayleighs quotient. Following eigenequation is resulted:

Ka = (m2)(~)Ma (7)

where M = [Mu] and K = [Ku] are N x N real and symmetric mass and stiffness matrices

of the system. Solution of Eq.(7) gives rise to estimated eigenvalues of the system
A.,= ~, / CL, r =1,2,... N, where CLis the longitudinal wave speed, and the corresponding

eigenvectors a, = [a,l, ar2,...arN]T. The estimated mode shape functions are:
U(N)= a~q) ,

r r
r=l,2,...N (9)

where @=[q+, q2,... %]=.

EFFECT OF BASE FUNCTIONS

To satisfy the boundary condition described in Eq.(2), eigenfunctions of the fixed-free and
fixed-fixed beam of length L are used as base functions:

[

nzx
sin — n=l,3,5,..., (fixed - free)

qn(x) = 2L (lo)
sin z n =2,4,6,.,., (fixed - fixed)”

For this case, the elements of the M and K matrices are:
L

A4v = pA~sinkixsinkjxdx , (11)
o

L

and Kti = EAkikj ~coskixcoskjxdx + KsinkiLsinkjL (12)
o

where ki = iz / 2L and kj = jz / 2L. Listed in Table 1 are the exact eigenvalues of the system

shown in Fig. 1 (with L = l.OnZ, E=6.85x1010N/m2, p=2.7x103kg/rn3,

A = 0.05 x 0.025m2 and K = 5 x 108N / m2 ) in comparison with the estimated eigenvalues

by using the first 8 ( N =8) combined mode shapes as described in Eq.(10) and that using the
first 8 eigenfunctions of the fixed-free beam.

Table 1. Eigenvalues of the beam ( N = 8 ).
—
r
1
2
3..

4
5
6
7
8—

2.70744550
5.52540977
8.45822418
11.46659801
14.51954791
17.59913076
20.69536334
23.80252122

Combined Fixed-Free
2.70744550 2.75901507
5.52540977
8.45822418
11.46659803
14.52084347
17.94220467
25.73305232

5.59945224
8.53394919
11.53761057
14.58590674
17.66325115
20.76187933

70.81022066 I 23.88635338



When the combined mode shapes are used, the high convergence rate is demonstrated by
comparing the first 4 estimated eigenvalues with the exact ones. The corresponding
eigenfunctions are shown in Fig. 2. The first 4 eigenfunctions using the combined mode
shapes overlap with the exact ones, while the estimated eigenfunctions by the fixed-free mode
shape functions show a poor convergence in particular near x = L. The main cause of the low
convergence is that the fixed-free mode shape functions are not capable of satisfying the force
boundary condition. However, the error in higher order eigensolutions ( r =6,7,8) using the
combined mode shapes is more pronounced than that obtained by the fixed-free
eigenfunctions.

1

~“:
m m.05

/

-1
0 05 1

x (m)

x (m) x (m) x (m)

1

ru!ir
1

05 05 05
. 0

!0
:
EO go

5 5
. . .

45 -05 -05

.1
‘0 05 10 05 , 10 05 I

x (In) x (m) x (m)

Figure 2. Eigenfunctions of the beam ( N = 8). Solid lines: exact solution,
dash dotted lines: combined base functions, dotted lines: fixed-free base
function.

The common approach to obtain the accurate higher order eigensolutions is to increase the

number of the base functions. The examination of the eigenfrequency squared @ (Table 2)

obtained using combined base functions ( N = 16) shows that there is a pair of complex ~~
with their real parts (3.5742, converted into the eigenvalue by 1, = real( ~, ) / CL)in between
the first two eigenvalues from the exact solutions. The complex eigenvalues have no physical
significance for the system considered in this study, because the eigenvalues of a generalised
eigenequation with the real and symmetric matrices M and K must be real. The first 8
estimated eigenfunctions using fixed-free mode shape functions ( N = 16) are examined with
comparison to exact eigenfunctions. For this case, all the eigenfunctions using the combined
base functions have imaginary parts as shown in Fig. 3. Although the real parts of the
eigenfunctions correspond closely to the exact solution, the imaginary parts of the
eigenfunctions are not linearly dependent upon their real parts. Figure 4 shows the
eigenfunctions corresponding to the complex eigenvalues ( r = 15,16 in Table 2). The spatial
distribution of these eigenfunctions correlates well with the imaginary parts of the
eigenfunctions shown in Fig. 3. However, they clearly indicate the error in the prediction.



Table2 The beameigenfrequency squared (N=16).

r

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

tiJ~Combined (x 1010)

0.0185971441244
0.0774561294208
0.1815035781042
0.3335769111352
0.5348512259744
0.7857949688217
1.0866080512718
1.4373837461642
1.8381711703520
2.2921571689099 + O.OOOOOOOOOOOOOi
2.9160708428437 +O.OOOOOOOOOOOOOi
4.4077042619969 +O.OOOOOOOOOOOOOi
10.0549737603058 +O.OOOOOOOOOOOOOi
81.4279112036678
0.0324114006714 +0.9398648147814i
0.0324114006714- 0.9398648147814i

m ~ Fixed-Free (x1010)

0.01894542809071
0.07844720812182
0.18299919598895
0.33539526391967
0.53687866188681
0.78797133228146
1.08890428288120
1.43978889238310
1.84068433033446
2.29162594298094
2.79263868498729
3.34374516420512
3.94497359712145
4.59637317082678
5.29806584883849
6.05058586964743
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Figure 3. Imaginary part (dash dotted lines) of the beam eigenfunctions ( N = 16)
using combined base functions, compared with the real part (solid lines).
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Figure 4. Beam eigenfunctions ( N = 16) corresponding to the complex eigenvalues
when using combined base functions.

R’EMARKS ON MATRIX SINGULARITY

The behaviour of the linear independence of the selected base functions p.(x) can be
determined by examining:

clql(~) + c~qz(x)+... +cjv%(x) = 0. (13)
If non-zero coefficients exist, the functions are referred as linearly dependent. Multiplying
Eq.( 13) by q,(x), and integrating the resultant equations in the range of O S x < L, we than
have:

Ac=O (14)
L

where A,n = ~ P,,(x)~. (x)dx. If ~~(x) are orthogonal functions in O S x S L then c = O.
0

Therefore orthogonal functions in 0< x S L are linearly independent. However, if ~fl(x) are
selected from two separate sets of base functions, the orthogonality and the linear
independence of the functions are not guaranteed. For this case, the degree of the singularity
of matrix A can be used to measure the degree of the linear independence of the base
functions. If the base function is selected as in Eq. (10), then the mass matrix in Eq.(7) is
identical to A. This indicates that degree of the singularity of mass matrix M is directly
related to the degree of the linear independence of the base functions. The degree of the matrix
singularity may be measured by the matrix condition number. If the real ands ymmetric matrix
M is not singular, its condition number is defined as:

max{lA1l,...,ll~l}
cond(M) = (15)

min{l A,l,...,llNl}

where as,..., IN are eigenvalues of M. If cond(M) approaches to 1, the matrix M is well

conditioned. If cond(M) reaches infinity, M becomes singular. If M approaches to singular,
the corresponding eigensolution of Eq.(7) even using the QZ method will be inaccurate due to
inherited division of very small values. As a result, some eigenvalues will be in error and so
the eigenfunctions.



ADJUSTABLE BASE FUNCTIONS

Considering a set of base functions ~~(x, ~), where ~ is an adjustable parameter, they are
used to express the mode shape function of the beam vibration using Eq. (6). The selection of

~ should allow U(N)capable of satis~ing all the boundary conditions and matrix M in Eq.
(7) being less singular. For example, we may select the mode shape functions of fixed-free

beam with an adjustable length of L, = L+ f. In this case, the base functions are:

~)~], OS XSL, for n=l,2,..., N.qn (x, ~) = sin[(n – – (16)

The Rayleigh-Ritz method giv& rise to the mass and stiffness matrices of the eigenequation
(Eq.(7)) with the elements having the similar expressions to Eqs. (11) and (12) except:

In
ki=(i– Z)landkj=(j -;):.

The conditio; number of matrix M is shown as a function of L, in Fig. 5 (IV= 32 ). When

L, s Im, M is well conditioned, while when L, 21. 25m M becomes very ill conditioned.

In particular for these L. where the condition numbers of M are not shown in the curve,

their condition numbers approach to ‘infinity’. There is a transition region (1< L, <1.25m)

where M is sufficiently well conditioned. It will be shown that within this region the
eigensolutions have high convergent rate and accuracy.
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Figure 5. Mass matrix condition number
parameter (N= 32).

as a function of adjustable

Tables 3 lists the first 3 estimated eigenvalues using the adjustable base functions (Eq.(16) for
N =32 ) as a function of L,. It is shown that when L, S L = lm, the convergence rate of

the eigenvalues is slow, although the matrix condition numbers are small. As soon as L, > L,
the estimated eigenvalues start to approach the system eigenvalues. It is worth noting in Table
3 that the convergence rates of the eigenvalues are higher for those L. giving relatively larger

cond(M). There is a range of L, ( 1.05m S L, <1.25m ) where convergence rate of the

eigenvalues is high, and condition number of the matrix M is not extremely large. Within this
range, we haven’t found any complex eigenvalues and eigenfunctions. Above the limit of this



range however some spurious eigensolutions can be resulted, because the corresponding
condition number of matrix M becomes extremely large.

Table 3. The beam eigenvalues as functions of cond(M) and adjustable

parameter ( N = 32).

,

(

L. (m) ?&I L, k3 cond(M)
0.8 3.191871481538 5.719611254141 10.13650509789 2.00000000000001
0.85 3.206562886396 5.525909493333 9.140701180114 2.00000000000000
0.9 3.096795788143 5.622539018884 8.549197493233 1.99999999592705
0.95 2.915355321629 5.706405543836 8.491972785434 1.99962858061440
1.0 2.719935276498 5.542662401730 8.475056002434 1.00000000000001
1.05 2.707446996034 5.525412541664 8.458228353277 1.044831850006807e+03
1.1 2.707445509913 5.525409777444 8.458224184164 4.500829942024973&6
1.15 2.707445509647 5.525409776871 8.458224183188 1.171132061853340e+lo
1.2 2.707445509647 5.525409776871 8.458224183187 1.821138592816997e+13
1.25 2.707445509647 5.525409776871 8.458224183187 3.629081306428040e+l 6

CONCLUSIONS

The convergence rate of the approximated eigensolutionsof distributed structures canbe
greatly increased when the adjustable base functions are used. In many cases, the
conveniently selected orthogonal base functionsmaynot satis@all theboundary conditionsof

the system. Atransformation of the functions using an adjustable parameter ~ allows the
possible satisfaction of the boundary condition through the superposition of the transferred
functions. However, the orthogonality of the new base functions in O<XSL may be
reduced. It is found that the high convergence rate oftheeigenvalues often corresponds to the
relatively large condition number ofthe mass matrix. There isalsoa limit for increase of the
condition number of the matrix M. Beyond this limit, where cond(M) is extremely large,
spurious eigensolutions can be resulted. Prediction of the system characteristics will be in
error.


