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ABSTRACT

The equations of motion of a fluid-filled tube moving with axisymmetric motion are
described. This leads to a dispersion plot describing the frequency dependence of
four wavenumbers. One wave is predominantly controlled by the fluid and wall
stretching, the others by wall motion. Homogeneous rubber tubes were found to
soften with increasing pressure while braided rubber tubes stiffened significantly
with increasing pressure.

1. INTRODUCTION

Elastomeric flexible tubes and bellows are used to control structure- and fluid-borne
vibrational waves in pipes by providing an impedance mismatch, reflecting both
fluid and structural waves back towards the source. This theoretical study is
intended to investigate these phenomena by considering the general case of wave
propagation in a fluid-filled, orthotropically-stiffened and internally pressurised
shell. Only axisymmetric waves were considered as these are probably most
significant. In [1], the appropriate wave equations were set up. This leads to plots
of dispersion curves relating the wavenumbers of the four possible wave types,
s = 1,2,3,4, to frequency. These dispersion relationships are used hereto derive the
impedance matrix for a fluid-filled tube. This matrix relates input fluid or structural
motions to transmitted fluid pressures or axial wall stresses.

The tube shown in Figure 1 has radius a, wall thickness h and length L The mean
density is p, the elastic moduli in the axial and circumferential directions are EX,~.
The associated Poisson’s ratios are VX,v6.



2. EQUATIONS OF MOTION AND WAVENUMBERS

It is assumed that four waves of the form, e-iksx, h = 1,2,3,4, propagate to the right
in an infinite tube. Each of these waves has a radial and axial displacement in the
shell, WS, Us, and axial displacement in the fluid, Us. The relative sizes of these
waves are derived by considering the tube element shown in Figures 2 and 3.
Bending moments, M, shear forces, Q, axial tension, Nx, and fluid pressure, P, are
considered [1, 21.

Axial equilibrium of the shell gives

[“u[-W=a’huaE~h ~+ ve (1)

Pa
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The equation for radial equilibrium of the shell is found by consideration of Figure
2.
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Substitution of harmonic solutions for propagating waves,

–i~xu=USe –iksx
f w=WSe t p = Ps e-ikxx (3)

where Us, WS and PS are the axial displacement, radial displacement and fluctuating
pressure associated with each wavenumber. Equation (1) becomes:

( )i2’/~ – a:us =ix (vfJ-yJyE) WS (4)
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normalised axial wavenumber. Equation (2) becomes:
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No @2where x –– — is the normalised tension, r = ~ is the normalised bending stiffness
E~h

term. The pressure amplitude, P&is given from [3]:
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where Kf is the fluid bulk modulus and af, the free normalised wavenumber in a

dpfrigid walled cylinder, is cq = aco ~ ; pf is the fluid density.

Combining equations (4), (5) and (6) leads to an eighth order wave equation [11 in

terms of cx~, the normalised wavenumber. The solution gives four pairs of
wavenumber, s =1,2,3,4.

3. DERIVATION OF THE DYNAMIC STIFFNESS MATRIX

For a tube of finite length the axial displacement fields, u, uf, and the shell radial
displacement, W, may both be described as a sum of the four pairs of waves
corresponding to the roots, s = 1,2,3,4. The axial motion for the shell, for example,
is

u= z [L.] (UJ (7)
s = 1,4

where [LJ ‘[e-Te~Jand{us)=-K}
right and left traveling waves.

Using equations (l), (2) and (3), the displacements, Us, Us~ and forces, Oxs,Ps, can
all be expressed in terms of the radial displacement, WWi.e.

{Us} = [Csl {WJ, [Usfl = [Bs] {W5}, [axsl = [Es] {Ws}, [Psi= [Fsl {Ws} (8)

The dynamic stiffness expressions require that the stresses and pressures are
multiplied by the respective cross-sectional areas, such that the axial shell force,
N(x) = - 2zah o(x), and the pressure force, P(x) = IU# p(x). The matrices describing
these forces at any position, x, are the sum of the four roots.

N(x)

{1 {}

u(x)

P(x)
= [M] [L] {W] , UAX) = [N] [L] {W] (9)



where {W) = {WI, W2, W3, WA}, [L] is a diagonal matrix, L~, [M] and [N] are
composed from equations (8).

The displacements and the forces have been stated in terms of a common variable
(W). The forces and displacements at the boundaries, x = O,x = 4, are substituted.

N1 = N(0) , N2 = – N(4) , P1 = p(o), P2 = – p(O
(lo)

U1=u(o) , U2=U(4) , Ufl=Uf(o) , uf2=Uf(l)

The {W} in equations (9) are then eliminated by division of the forces by the
displacements to yield the impedance matrix.

The impedance matrix [Z] = l/io [K].

4. PREDICTED TRANSFER FUNCTIONS

The first set of tests involved changing the axial tension and internal pressure on a
homogeneous rubber tube filled with water. The tube parameters were a =25 mm;

h=10 mm; 1=0.2m; E~=E~=l@N/mz; VO, VX =0.5; p =lOskg/mz,

Kf’= 2.7x 109 N/mz, pf = 10s kg/mz. The wall loss factor was 0.1.

The dispersion curve for the first test with zero pressure and tension is shown in
Figure 4. Thes = 2 wave is the axial wave in the rubber and is responsible for the
structural transfer functions Z12 , Z1l in Figure 5. This wave is not affected by
internal pressure or wall tension. Thes = 1 fluid wave is much slower and is below
about 100 Hz, where it is called the Korteweg wave involving wall stretching. The
fluid transfer function, Z34, is shown in Figure 5 to be much lower, with a higher
modal density than the structural transfer function, Z12. At about 300 Hz the tube
ring frequency occurs and bending in the wall thickness is dominant. The other two
wavess =3, 4 are non-propagating waves responsible for local mass effects.

Internal pressurization was found to be relatively unimportant for homogeneous
rubber except at low frequencies. In Figure 6 it can be seen that when 7P= 1 the
s = 1 wave becomes almost non-propagating. The ring frequency drops to 20 Hz as
seen in Figure 7. Further increase would move the ring frequency to zero causing
catastrophic expansion.

Tests were performed on a water-filled braided rubber tube with properties as

follows: a = 100 mm; h = 10 mm; 1 = 1 m; E; E~ =5.1 x 108 N/m2; ve, v, = 1;

p = 1.07x 103 kg/ins; loss factor = 0.1. When there was no pressurization the fluid
input and transfer impedances are given in Figure 8. Under pressurization these
impedances increased dramatically as seen in Figure 8. The reason for this is that
the braiding causes the high Poisson’s ratio values given, therefore pressurization
causes axial tension, which stiffens the tube to act as a membrane.
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Figure 1. Section through a fluid-filled pipe showing
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Figure 3. Forces on a section of an element.
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Figure 4. Non-dimensional wavenurnber versus frequency.

Testl: yp=O, ~=0, --- S=lS=2,2S=3, ”””” OS=40S=4.
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Figure 5. Test 1, yP= O,x = O,structural impedance modulus, — input

impedance Zll, – – – transfer impedance Z1~ --” fluid transfer
impedance Zls.
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Non-dimensional wavenumber versus frequency.

Test 2, yP=1, ~=0.5, ----s =s=2, =s=3, –s=3, ‘“--”s=4.
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Figure 7. Real part of input fluid impedance Z33,—~=o, x=o,
---yp=l, ~=o.5.
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Figure 8. yp = 0.5, ~ = 0.25, — fluid input impedance Z33,– – – fluid transfer

impedance ZM. y~=o, ~=o, ++z~,-+-z~.


