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ABSTRACT
For many years it has been recognised that so-called “envelope analysis” is a very powerfbl
tool in the detection and particularly diagnosis of rolling element bearings. A recent
quantitative study of the effects of masking signals has shown the benefits of peri?orming the
envelope analysis digitally, because of the better quality of filtering and the improved flexibility.
This paper demonstrates the considerable enhancements which can be achieved by analysing
the squared envelope signal, provided that the ratio of bearing to background signal can be
made greater than unity, and discusses methods of achieving this by optimum bandpass filtering
and self adaptive noise cancellation to remove masking by gear signals. Techniques are also
discussed for dealing with very short signals, and varying signal paths such as for planet
bearings in epicyclic gearboxes.
Developments are also proceeding in the field of gear diagnostics, made possible by the
availability of new digital signal processing packages and for example direct downloading of
vibration signals from a DAT recorder. An example is the increase in the application of time-
frequency analysis techniques such as wavelet analysis and variants of the Wigner-Ville
distribution. The paper discusses a number of techniques and compares the use of direct
transmission error measurement with externally measured vibration signals.

1. INTRODUCTION

Vibration analysis for diagnostic purposes was previously done almost exclusively using
dedicated FFT analysers, where the user was constrained by the fimctions, transform size etc
built in by the manufacturer. In recent years, however, there has been a considerable increase in
the computing power and memory size of personal computers, as well as in the availability of

powerfid signal processing packages such as Matlab” [1], which gives individual users a great
deal more flexibility in applying diagnostic techniques not available in individual analysers. At
the same time it gives researchers a great deal more flexibility in developing new algorithms,



because of the speed with which these can be written and tested. Even the previously difficult
problem of obtaining digitised signals using appropriate antialiasing filters has been solved by
the availability of multiple channel digital (DAT) tape recorders from which it is possible to
download extremely long digital signals selected by previewing the even longer signals
recorded (a typical DAT tape contains more than a gigabyte, and newly available versions 25
gigabyte).

It is thus timely to give some information about diagnostic techniques which make use of these
currently available tools, and this paper endeavors to do that for the specific cases of rolling
element bearings and gears. It will be found that demodulation, both amplitude and phase
demodulation, is a usefi.d part of a number of techniques in both areas, and so the paper
describes how this can be done very simply digitally.

2. ROLLING ELEMENT BEARING DIAGNOSTICS

In particular in the early stages, faults in rolling element bearings give rise to a series of high
frequency bursts as the fault impacts at regular intervals with other bearing elements under
load. Where the load at the fault is constant (eg an outer race fault with steady radial load) the
high frequency bursts will be reasonably uniform, and represent impulse responses excited by
the shocks. The frequency content of such pulses will be dominated by all natural frequencies
within the range of the excitation force pulse, which can be tens of kiloherz for incipient small
faults, but as will be shown below, they tend to contain very little information at the repetition
frequencies or so-called “ballpass fi-equencies”.

Where the load on the fault varies periodically, eg with inner race or rolling element faults with
steady radial load, the whole signal will be amplitude modulated at the frequency with which
the fault passes through the load zone, eg the shaft speed for inner race faults, and cage speed
for rolling element faults [2]. Modulation also occurs as a result of periodic variation in signal
transmission path, even for constant load.

Figure 1 is a simulation of acceleration signals from a single outer race fault, with and without
variations in pulse spacing. For simplicity, only one resonance frequency is assumed to be
excited, for example the first in a series, separated out by Iowpass filtration. Even with no
spacing variation (Fig. 1(a-b)), the spectrum contains almost no itiormation at the first few
harmonics of the ballpass frequency, although this information is to be found in the spacing of
the harmonics in the vicinity of the resonance frequency. However, in practice the spacing of
the bursts is not uniform, even with constant shafl speed, because of variable slip, and there is
usually some random fluctuation, which can give the situation illustrated in Fig. 1(d-e). This
can be explained by the fact that the formulas for ballpass frequencies contain a COS$ term,

where $ is the load angle from the radial, and this is something which varies within each
revolution as the ratio of radial to axial load changes. The cage keeps the rolling elements
roughly evenly spaced, but some slip must occur. As illustrated in Fig. 1(d-e), the random
spacing fluctuation gives a smearing of higher order harmonics to the extent that they can
bridge over in the vicinity of the resonance frequency, so that the spectrum of the raw signal
gives no information at all about the repetition period. The slip may only be a fraction of a
percent, but for example in the case of slow speed machines such as paper machines, where
shaft speeds are a few Hz, and resonances excited are several kHz, the spectrum appears
completely noise-like.
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Use is made below of this property to separate bearing from gear components, the latter being
phase-locked to shaft speeds.

Figure 1(c, f) illustrate that by frequency analysing the amplitude demodulated bearing signal
(the so-called “envelope signal”) the burst repetition frequencies become apparent, even with

spacing variations. For this reason, envelope analysis has become one of the most powerfid
techniques used in the diagnostics of rolling element bearings, but in most cases the envelope
signal is obtained by adding analogue hardware, even when the envelope signal is to be
analysed digitally. The envelope signal can be formed by bandpass or highpass filtering the
original signal to remove masking signals, and then recti@ing and smoothing it, typically with
an RC smoothing circuit. This smoothing operation is not really required, as it only removes
high frequency components which are automatically excluded in the final envelope analysis in a
lower frequency range, and it can limit the rate at which the envelope signal can decay between
pulses. This paper shows how all these operations can better be carried out by digital

techniques in an FFT analyser or by using a signal analysis package such as Matlab@.



2.1 Amplitude Demodulation

The signal could of course be rectified as in the analogue case, by making the sign of all terms
positive, but this is only efficient if the signal is not to be bandpass filtered. In the latter case
there are two ways in which the bandpass filtration and amplitude demodulation can be carried
out, both giving a reduction in sampling frequency appropriate to the frequency range of the
modulation signal, and thus of the record size for a given record length in seconds. Both make
use of the fact that a signal with a one-sided spectrum, a so-called “analytic signal”, is
complex, but its imaginary part is the Hilbert transform of the real part [3]. An analytic signal

can also be expressed in the form A(t)e’$(t) where A(t) is an amplitude modulating fi.mction

(plus DC offset so that it is always positive), and eJ$(L) is a rotating unit vector with a

modulated phase function, representing fluctuations around a carrier frequency in the centre of
the band. Thus $(t) can be more specifically represented as 2xfCt + $~ (t) , where $~ (t)

is the phase modulation of the carrier frequency fC . If the bandpass filtered analytic signal is

frequency shifted by an amount f~ , it becomes A(t)eJ(O(t)-2tik’), which still has the same

amplitude fimction A(t) and thus the same envelope. If fk is made equal to fc the phase will
be equal to the modulating fi.mction ~~ (t) but this is mainly of interest for phase

demodulation as discussed below.

A

(c) A(t)eJ(b(t)-2fic’) = A(t)eJk(t)
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Figure 2

1 Frequency

Effect of zoom processor. (a) Original spectrum
(b) Frequency shift to zoom centre frequency fc

(c) Spectrum after lowpass filtration.



The first demodulation method can be used in conjunction with FFT analysers which have a
real-time zoom processor. In these, the signal is first frequency shified in the time domain (by

multiplication by e“J2tikt ), and then lowpass filtered around the new zero frequency
corresponding to the zoom band [3]. Figure 2 illustrates how this results in a complex time
signal whose magnitude is the same as that of the analytic signal which would be formed by
bandpass filtering the resonance to be demodulated, and taking only the positive frequency
part. It will be seen below that this has the same amplitude or envelope signal as the real
bandpass filtered signal, except for a possible scaling factor. The amplitude of the zoom
processor output signal can thus be re-analysed in a lower frequency band (corresponding to
the lower sampling frequency) to produce the required envelope spectrum. If the FFT analyser
does not carry out this procedure internally, it is otlen possible to read the complex zoom
processor output signal into a connected PC, and read its magnitude in again as a real signal to
perform the envelope analysis. It should be noted that the lowpass filtration is done with filters
of antialiasing quality, (typ. 120 dB/octave) thus allowing bearing signals to be separated from
adjacent masking components which can be much larger. This is not the case normally with
analogue envelopes.

Figure 3 shows an example from a faulty paper mill bearing analysed in this way using a Bruel
& Kjaer Analyser type 2035, which performs both the demodulation and the envelope analysis.
Figure 3(a) is a comparison of baseband spectra with and without the fault, and shows that the
major change is at 5.4 kHz, even though the shafl speed is less than 2 Hz, and ballpass
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Figure 3 Envelope analysis by the zoom FFT method for a paper mill bearing.

(a) Comparison of baseband spectra with and without the fault.
(b) Zoom analysis in the demodulation band indicated in (a).

(c) Envelope (power) spectrum showing harmonics of BPFO.



frequency, outer race (BPFO) 15.5Hz. Figure 3(b) shows theautospectrum of thezoom band
centred on 5.4 kHz which was demodulated to obtain the envelope spectrum in Fig. 3(c). The
zoom spectrum is a typical case where the high order harmonics have merged so that the
bearing fault spectrum appears like white noise. On the other hand, the envelope spectrum
clearly shows the harmonics of BPFO, even in the presence of pulses from a pneumatic
lubricator (at about 5.5 Hz) which were present even with the bearing in good condition.

When a digital signal processing package is used, basically the same result can be achieved by a
different procedure. An initial large transform is normally required to encompass the high
resonance frequencies to be demodulated, at the same time as providing sufficient resolution in
the spectrum to resolve the modulation sidebands (ie a length equal to several periods of the
modulation sidebands, the lowest frequency typically being cage speed, or 40°A of shafl speed).
As illustrated in Fig. 4, the band to be demodulated is then extracted into a smaller buffer and
inverse transformed to a complex time signal. Even though the frequency shifl and bandpass
filtering have been done in the frequency domain, the finally resulting complex time signal and
its envelope are very similar to what is produced by the zoom technique. The separation in the
fi-equency domain is perhaps even better, depending on what window is used for the initial
transform, but even the common Hating window gives complete separation over a wide
dynamic range in a small number of lines. In Fig. 4(b) the situation is illustrated where the
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centre of the demodulation band is shifled to zero frequency (as for the zoom technique).
Though this is necessary for phase demodulation, it has been shown above that the envelope
signal is unaffected by the amount of frequency shifl, and therefore the procedures of Fig. 4(c)
and (d) may be used, these being much simpler. It is shown below that forming the (squared)
envelope of the complex time signal corresponds in the frequency domain to a convolution of
the spectrum with its complex conjugate. Using FFT procedures, the convolutions are circular,
and to avoid any chance of wraparound effects it is best to zero pad the spectral segment up to
double its size, as in Fig. 4(d). This means that the transform size and sampling frequency are
double what they otherwise would be, though it does not change the resolution of the final
envelope analysis. In most cases, however, a resonance peak is demodulated, and the
concentration of the spectral information in the centre of the band means that wraparound
effects are negligible and the procedure of Fig. 4(c) can be used. Analysis using this procedure
on the same paper mill signal as Fig. 3 is included below in Fig. 6.

2.2 Masking by Extraneous Signals

In a study published elsewhere [4], the masking effects of extraneous random and discrete
frequency signals were studied in detail. The results of the mathematical analysis can be
explained graphically as in Fig. 5. Figure 5(a) shows the (amplitude) spectrum of an analytic
signal ~t) which contains modulated bearing signals at two carrier frequencies, and thus
having sidebands with a spacing equal to the bearing fault frequencies. It also contains a
section of narrow band masking noise, and a single discrete frequency masking tone (though in
practice there would normally be several of each). The squared envelope of ~t) is given

by f(t)” f *(t) whose spectrum is given by the convolution theorem as the convolution of

F(f) with F* (–f ), the Fourier transforms off(t) and f(t), respectively. In this convolution

operation, the second term is first wrapped around so that the complex conjugate frequency
components line up with their positive frequency counterparts, and are then multiplied and
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integrated for each frequency displacement of one spectrum with respect to the other. Thus at
zero frequency, the result is a sum of squared amplitudes, and is proportional to the mean
square value of the signal. Each time the displacement is such that two discrete frequency
components line up, a component will be found in the spectrum of the squared envelope signal,
and thus at each of the sideband spacings corresponding to the modulating frequency. Discrete
frequency masking signals will only mask the result if they have a small spacing in the original
spectrum from some other tone; most difference frequency terms will be at higher frequency
than the bearing frequencies. Narrow band noise terms, however, wherever they are located in
the spectrum, will add to the triangular noise spectrum illustrated around zero frequency, and
this provides the dominant masking of the bearing frequencies. Note that the bearing frequency
components are always present additively in the spectrum, even when they may appear masked
in the original time signal.

What is the difference between the envelope signal and its squared value of which we have just
discussed the spectrum? Both will fluctuate with the same basic periodicity, although as shown
in [4] the relative level of harmonics will vary somewhat. This would not affect the diagnostic
capability significantly. Since the various components are present in the spectrum of the
envelope squared signal according to the square of their values in the original signal, the signal
to noise ratio of bearing to extraneous components is approximately the square of its value in
the original signal. In other words, provided it can be made greater than unity, there will be an
advantage in analysing the squared envelope signal rather than the envelope directly.

Fig. 6 illustrates a number of the above points. Figure 6(a) shows the envelope spectrum of the
rectified signal, which despite considerable masking still contains the harmonics of BPFO at
about the same level as in Fig. 6(b), where the masking has been considerably reduced by
bandpass filtering in the frequency range 5.4-5.6 kHz, where the bearing fault gave the biggest
change. Note the similarity of this result to that of Fig. 3(c). This bandpass filtration gives such
an improvement in signal to noise ratio that a considerable advantage is given by analysing the
squared envelope signal as shown in Fig. 6(c). The BPFO components now dominate
completely over those fi-om the lubricator.

2.3 Self Adaptive Noise Cancellation

Where it is not possible to find a part of the spectrum where the bearing signal dominates
completely, so that the signal to noise ratio cannot be made greater than unity simply by
bandpass filtration, this will oilen be because of masking by gear noise, comprising discrete
frequency sidebands spaced around gearmesh harmonics. In such a case, use can ofien be made
of so-called “self adaptive noise cancellation” to remove or reduce the gear signals and thus
improve the signal to noise ratio of the bearing signals.

Self adaptive noise cancellation (SANC) is a Ii.u-ther development of adaptive noise
cancellation (ANC) [5], for which it is necessary to have two signals, one (the primary signal)
containing two components to be separated, and the other (the reference signal) coherent with
one component only. An adaptive filter is caused to act on the reference signal, adapting its
linear transfer fi.mction in such a way as to make the filter output most similar to the coherent
component in the primary signal. The other component can then be obtained by subtraction.
Adaptive noise cancellation has been applied to bearing diagnostics in [6, 7]. Self adaptive
noise cancellation can be used when there is only a primary signal available, but where the two



components have different characteristics, in particular where one is made up of discrete
frequency components and the other random. As shown above, the degree of randomness in
normal bearing signals satisfies this requirement with respect to gear signals, which are locked
to shafl speeds. Even if there is some speed fluctuation, this can be removed by “tracking”,
which involves resampling the signals at equal shafl angle increments, as determined by
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analysing a shall tachometer signal at the same time. Tracking is built into some analysers, but
can also be done by interpolation routines in for example Matlab@. As explained in [8], the
reference signal can then be made a delayed version of the primary signal, so that the gear
component is still correlated, but the random bearing component uncorrelated. Ref. [8] gives
details of the correct choice of parameters to use in optimal SANC.

Figure 7 shows an example of the benefits given by SANC in diagnosing inner and outer race
faults in a planet gear bearing in a helicopter gearbox. This compares envelope spectra both
before and after the application of SANC to a signal bandpass filtered in a band where the
maximum change in level occurred, but where this was only 6 dB because of masking by gear
noise. The result after SANC enhances the bearing components greatly, both outer race
(BPFO) and inner race (BPFI). No tacho signal was available for tracking, and neither could
use be made of another procedure recommended in [9] to improve signalhoise ratio by special
windowing of the time signals to extract the part of the signal corresponding to the passage of
just the faulty planet bearing.
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Figure 7 Use of SANC to remove masking by
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gear noise. G is a gear related masking
component and 2 x G its second harmonic. BPFO and BPFI defined in text.
(a) Envelope spectrum obtained by optimum bandpass filtration in range 13-16 kHz.
(b) Spectrum of squared envelope signal tier SANC.

2.4 Envelope Analysis of Short Records

In some cases, the record length of signal available for analysis is limited by extraneous factors.
A typical case is that mentioned above of planet gear bearings in epicyclic gearboxes, where
the time is limited by the time of passage of one bearing past an externally mounted transducer.
Another is in the analysis of rail vehicle bearings using track mounted accelerometers. Figure 8
shows a result from [10] where it was shown that considerably better resolution could be
obtained with a short record by using the maximum entropy technique [11], although almost as
much benefit could be obtained by the simple expedient of spectrum interpolation by massive
zero padding of the time signal.

3. GEAR DIAGNOSTICS

Some years ago, the author proposed a model for interpreting gear vibrations as a modulation
(both amplitude and phase modulation) of an otherwise uniform gear mesh signal [12]. The
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two sections where the inner race fault passes the loading zone.
(a) Envelope signal after bandpass filtration in frequency range 2.7- 3.3 kHz,
(b) Envelope spectrum without interpolation, (c) Envelope spectrum with
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basis of the amplitude modulation concept is that the gear transmission error, which is
generally acknowledged as the fimdamental source of gear vibration and noise, has some
components due to geometric profile errors, but others due to tooth deflection under load,
which results in a modulation effect with load. The phase modulation was initially thought of
somewhat naively as due to speed fluctuations, but has later been shown to be orders of
magnitude greater than the torsional vibration of the gears themselves. Mark [13, 14] was one
of the first to make a detailed mathematical model of the generation of gear vibrations from
transmission error, and his model can be interpreted as an amplitude modulation of the mean
tooth mesh signal by fbnctions having the periodicity of rotation of the two gears in mesh.
Mark himself preferred to explain the resulting sidebands as a “DFT effect”, as errors
associated with each tooth were decomposed into elemental errors of different order such as
spacing, slope, curvature etc, for which there was only one value per tooth, and so the
resulting spectrum of each term had a period equal to the toothmesh frequency, which was the



“sampling frequency”. Consequently, low harmonics tend to be reflected around the toothmesh
frequency and its harmonics, giving the appearance of sidebands, The fact that the actual
spectrum is not periodic is explained by its subsequent modification by “mesh transfer
fictions”, wtichhave thepropetiies oflowpass filters associated with the contact ratio, and
with double the rolloff rate at high frequencies for helical gears. This is presumably just another
way of interpreting the same phenomena.

As a result of either of these models, effects such as uniform (or in fact the mean) wear show
up at the tooth mesh frequency and its harmonics, while non-uniformly distributed faults show
up at other harmonics of the two shafl speeds, in particular as sidebands around the gearmesh
frequency and its harmonics. Distributed effects such as distortion due to heat treatment, and
non uniformly distributed wear would tend to show up in a small number of strong sidebands,
while local effects such as spans and cracked teeth would be more impulsive and thus show up
as more uniformly distributed sidebands throughout the spectrum.

3.1 Toothmesh Demodulation

Even though such local effects are quite oflen detectable in the spectrum and cepstrum [15],
other cases have been reported where local defects were not apparent in the amplitude
modulation of the toothmesh signal [16]. In Ref. [16], however, McFadden showed that by
demodulating the toothmesh signals for both amplitude and phase, a crack could show up more
definitely in one than the other, and in the case reported was initially clearer in the phase than
the amplitude modulation signal, as shown in Fig. 9 (from Ref. [16]). It should be noted that to
obtain a result such as that in Fig. 9, it is necessary to carry out the following steps, all of
which can be achieved with a signal processing package (although perhaps easier and faster in
an analyser which incorporates them).
1) Signal resampling using the tracking techniques mentioned above. This is to ensure that the

digitised signals are phaselocked with the shafl rotation, as even one sample spacing

represents 360° of phase shift at the sampling frequency and thus 144° at 40°/0 of it, which
is normally the maximum frequency being analysed.

2) Synchronous averaging synchronised with the rotation speed (and starting phase) of the
particular gear being analysed. This can be repeated for each gear in the train.

3) Amplitude and phase demodulation of the toothmesh signal (or one of its harmonics) by
either the zoom demodulation technique, as illustrated in Fig. 2, or the block shlfl
technique illustrated in Fig. 4(b).

In Ref [16] the signal demodulated was an externally measured vibration acceleration signal,
but as pointed out in [17], this will not necessarily represent the situation at the tooth mesh
source, viz, the transmission error signal. The reason is that the difference between amplitude
and phase modulation, in particular for the very low modulation indices represented here, lies
primarily in the phase relationships of sidebands on either side of the carrier frequency
component. These can be modified considerably by the transfer finction which exists between
the source fi.mction and external measurement points, and thus it should be kept in mind that
the result obtained by demodulating such externally measured signals does not necessarily
reflect directly what is occurring at the source. There are two ways of counteracting this
difficulty, one of them not yet filly developed. The first is simply to measure the transmission
error directly, rather than (or as well as) the vibration signals. As explained in [18], this can be
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done by phase demodulating the signals from shafl encoders mounted on each shaft involved in
the mesh, as the transmission error can be interpreted as the differential torsional vibration of
the two gears in mesh, with proper compensation for the gear ratio. However, this relies on
being able to mount shaft encoders on both shafts, and this is not always practicable. A
potential fiture approach, though this has not yet been demonstrated for gears, is to use
inverse filtration to counter the effects of the transfer fimction from the source to the external
acceleration signals, such as has been done in the recovery of diesel engine cylinder pressure
signals from external measurements [19, 20].

3.2 Time/Frequency Methods

In recent years, a number of researchers have attempted to combine the advantages of analysis
in the time and frequency domains by using a combined time/frequency approach. The basic
problem is associated with the “uncertainty principle”, which states that the product
A f x At= a constant, so that to obtain better resolution in frequency involves poorer

resolution in time and vice versa.

The so-called Wigner-Ville distribution, developed originally by Wigner [2 1], but modified by
Vine [22] to use analytic time signals, so as to avoid intetierence between positive and



negative frequency components, appears to give better resolution than predicted by the
uncertainty principle, but suffers from intefierence terms located between the “true”
components, which are thus difficult to distinguish. As summarised in [23], however, a number
of workers have suggested modifications of the basic Wigner-Ville distribution which reduce
interference terms by smoothing in both time and frequency directions, but often achieve better
simultaneous resolution in time and frequency than the so-called “short time’ Fourier
transform” where the frequency resolution is basically given by the inverse of the length of a
time window which is moved in overlapping steps along the record, and the resulting spectra
plotted in 3-dimensional “waterfall” form, or as contour plots. The reader is directed to Refs.
[24-26] for details of a number of studies of the potential use of Wigner-Ville methods for gear
diagnostics.

An alternative time/frequency method which has been applied to gear diagnostics is wavelet
analysis [27], where the advantage is not so much that it gives better resolution than dictated
by the uncertainty principle, but that the time resolution is better at higher frequencies because
of the constant percentage bandwidth character of the resulting filters. The real advantages of
wavelets are connected with their analysis/synthesis capabilities, so it is difficult to see what
advantage they give in a purely analysis situation over classical l/n-th octave analysis. In [28],
McFadden and co-workers proposed a novel display technique for wavelet analysis of gear
signals, a polar diagram with frequency in the radial direction vs rotational angle of the gear.
This is a natural way of utilising the greater resolution available at higher frequencies. The
reader is directed to Refs. [28-30] for details of a number of studies of the potential use of
wavelet analysis for gear diagnostics.

4 SIMULATION TECHNIQUES

A number of researchers are attempting to apply neural networks to the automation of machine
diagnostics [30, 31], but the problem is that the networks must be trained to recognise the
faults which are to be detected and diagnosed, and it would not be economically viable to
experience all the failures required to train them in the normal way. Thus it appears that the
only effective way to train them is by using mathematical models to simulate the action of the
machines being monitored, and in particular the effects of a wide range of typical faults.
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Figure 10 Comparison of measured vs simulated transmission error for a spur gear set,
based on measured geometric deviations and estimated tooth pair stifiess, for a
given load and alignment. From [32].



A method of simulating bearing faults was outlined in Section 2, and this was in fact used in
[8] to make recommendations for the choice of suitable analysis parameters for SANC. It
could presumably also be used for training neural networks.

The simulation of gear vibrations is also well developed, and is improving continuously. Figure
10 from [32] shows how closely it was possible to predict the transmission error (TE) of a spur
gear from measurements of its profile errors, and an estimate of tooth pair stiffness. These
were automotive quality gears where the TE is dominated by the geometric errors, but a more
recent work [33] using finite element techniques to take into account the variation of tooth
compliance with contact point gives a much better agreement for nylon gears, and would thus
presumably also give an improved simulation for precision gears where the tooth deflection
effects also dominate over geometric errors.

5 CONCLUSION

The availability of simple means of recording and digitizing vibration signals, as well as
analysing them using powerfi.d signal processing packages on increasingly more powerfhl PCs
means that users are no longer limited by what analyser manufacturers provide. The paper
illustrates some current possibilities in bearing and gear analysis.
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