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ABSTRACT

9260

A simple and accurate third-order composite beam element is presented in this work.

This higher-order element possesses a linear bending strain as opposed to the constant

bending strain in existing higher-order composite beam elements. By using the Hamilton’s

Principle, the variational consistent mass matrix for the third-order theory is derived. The

resulting element is more accurate than the existing higher-order elements. The numerical

examples show that the mass matrix resulting from the higher-order displacement has a

considerable influence on the higher mode frequencies.

INTRODUCTION

The objectives of this paper are two fold, one is to present a simple and accurate third-

order composite beam element, and the other is to use this new element for the frequency

analysis of composite beams.

In the finite element modeling of composite beams and plates, a higher-order shear

deformation theory can lead to finite elements having the same number of nodal variables

but giving solutions with different accuracy. By studying the interpolation order of the

element bending strain, this paper presents a simple but accurate third-order composite beam

element, which possesses a linear bending strain as opposed to the constant bending strain in

existing higher-order composite beam elements. In many higher-order elements, the mass

matrices are either evaluated by the lumped mass method or based on the first-order theory.

In this work, the variational consistent mass matrices for the third-order theory are derived

from the Hamilton’s Principle. The present new element is used to solve some frequency

analysis of composite beams. The numerical examples show that the transverse shear strains

play a very important role in the dynamic behavior of composite beams. The numerical

examples also illustrate that the present composite beam element is more accurate than the

higher-order beam elements which are based on the same higher-order theory and having the

same number of nodal variables but using a different bending strain expression.

STRIANS AND VELOCITIES BASED ON THE THIRD-ORDER DISPLACEMENT

The displacement field of a beam in the third-order shear deformation theory [1] is, in

general, of the form

&
U(-Ly,z, t) =u~(x, y,t) +@(x, y,t) z –(X(*+$9 Z3 (1)

W(x, y, z, t) = Wo(x, y>~) (2)

where UOand WO are, respective y, the axial displacement and the deflection of a point on

the beam reference plane; @ is the rotation of a normal to the reference plane about the y-

axis; a = 4 / (3h 2); and h is the beam thickness. The influence of normal strain in the y-



direction on the behavior of composite beams will not be considered here, since the emphasis

here is to discuss the efficient finite element modeling.

Equations (1) and (2) lead to the axial normal strain, the transverse shear strain and the

transverse normal strain as

e, = em +ebz–aehz3, ex. =(1–~z2)e~, eZ =0 (3)

where ~=4/h2, and em, e~, es& eb are, respectively, the membrane strain, bending

strain, transverse shear strain and higher-order transverse shear strain on the reference plane.

They take the form

The displacement in Eq. (1) can be expressed in a different form. If one defines

Eq. (1) then can be ,rewritten as

&
l.l(x, y, Z,t) = Uo(x, y,t) – [-g – Y(L y,~)l z – W(L Y$~)

Accordingly, the normal strain, transverse shear strain and the velocities

eX = em +e~z–~e~z3, 2eXZ= (1–~z2)y

23

take the form

in which ~ = 4 I h2 and

a’wo &y *_*
e;”-~+~, ehs-~

(4)

(5)

(6)

(7)

(8)

(9)

Equation (9) gives the new expressions for the bending and higher-order transverse shear

strains.

Both of the strain sets given, respectively, in Eqs. (3) & (4) and in Eqs. (5), (7) and (9)

can be used for finite element modeling, and both of them result in C] -continuity elements

under the displacement-based formulation. The bending strains in Eq. (4) and Eq. (9) are

associated with different displacement functions. However, the one in Eq. (4) is a function of

the rotation, and the one in Eq. (9) is the function of the deflection and transverse shear

deformation. Because the orders of the approximations for the deflection and rotation are

different in the finite element analysis under the given number of nodal variables, these two

different bending strain expressions will lead to the finite element solutions with different

accuracy. This will be demonstrated latter.

HIGHER-ORDER COMPOSITE BEAM ELEMENT

Let Ue and Kke be the element strain energy and kinetic energy respectively, then the

Hi,milton’s principle states that

t$~f (Ue -Kke)dt=O
elem ‘0

(lo)

in which the work done by external forces is neglected. The Himilton’s principle leads to the
equilibrium equation of a system as



Mq+Kq=O (11)

where M, K and q are, respective y, the global mass matrix, stiffness matrix and nodal

variable vector of the system. Consequently, the frequency (I)can be evaluated by

(K-(D2M) q=O (12)

The derivation of the element stiffness matrix and mass matrix based on the third-order

theory is presented here.

ELEMENT STIFFNESS MATRIX

Let us consider a straight beam of length 1and rectangular cross-section h x h in which h

is the beam thickness and b is the beam width. The strain energy of an element, U,, is of the

form

(13)

where QM and QU are, respective y, the longitudinal Young’s modulus and transverse shear

modulus, and they are functions of z. Substituting Eqs. (7) and (9) into Eq. (13) leads to

U. =* J[em A,xem + e~DMe~ + y Suy+ e~a2HUefi

+ 2emcd3ne~– 2emaEne~ – 2e~aFne~ ]& (14)

in which

(AJ?u,DH,EH,F#n) =bj:::2(l,z,z2, z3, z4, z’)QHdz (15)

h12 ~_ pz2)2Qxzdz
Sxx=qh,2( (16)

In the finite element modeling of displacement-based formulation, element strains in Eq.
(14) can be expressed in terms of the element nodal displacement vector q= and the element

strain matrices as follows

e. =Bmq. , e; =B~q., 2.,, =y=B,qc, e;, = Bh,q~ (17)

Consequently, Eq. (14) becomes

u. ‘~q~~[BjDuB~ +B:AuB. +B:SHB. +B~P2~nBb +(B;BMB~ +BjBxxBm)

-(B:oEHB,. +B;cxE=Bm) -(B@F’uBh, +B;@’#Jl~ q, (18)

Then the Himilton’s principle leads to the element stiffness matrix K ~ as

K,= K~+Km+K$+Kh+Kc (19)

with

K~ =
J J
~B@mB#x , Km = B; AmBmdx ,

1

Kc = ~[(B;BHB~ +B;% Bm) -(B;(xExxBh, +B&iEUBm)

(20)

where K~, Km, K,, K ~ and K ~ are the element bending, membrane, transverse shear,



higher-order shear and coupling stiffness matrix respectively.

CONSISTENT MASS MATRIX FOR HIGHER-ORDER BEAM THEORY

The element kinetic energy Kk, corresponding to the higher-order theory takes the form

JJ (K,e =h “2 ~:
2 1 -h12

+ v: )Pdz~ = ; JJ’:;;2 K*) 2 + (%)2 )Pdzh

=; JJ:::2[(*)2 +(~)’ +z2(g&%2 +a’z’(~)’

a4 d 2W0 3~oti 2 d 2W0 *
+2z3~-2z T-J- az4X@dzal

By defining

J )=~j’::/’2(l, Z, Z2, Z3, Z4, Z6)@Z(JA, JB, JD, JE, JF, “

the element kinetic energy Kb can be written as

(21)

(22)

d 2W0‘ ti2
& = ~ @4(~)2 + ~A(~)2 + ~D(w) +~2~H(#

au. ay C32W0 ayduo d’w~ _ ——

‘2 JCGZX-WE a x–2tiF && at~h
(23)

The element displacements can be interpolated in terms of the element nodal displacement

vector q, as

where N, (j = u, w, wx and fl are the interpolation matrices. The equation above and the

Himilton’s principle give the consistent element mass matrix M ~ as

M. =Mw +MUO +Mwx +MY +MUOW+MUOY+MWXY

with

‘UO ‘~ ‘:OJANUO dx, M., =~ N;. J/&dxM. =j N: JANw&

(25)

MT =a2J N~JHN#x, Mu.. ‘j (N:oJN. +N;JAOMX (26)

Mw, M ~. and M .X are, respective y, the consistent transverse, axial and rotary mass

matrices; M ~ is the mass matrix resulting from the higher-order terms; and M MOW,M ~oyand

M ~xyare the coupling terms.

The consistent mass matrix here has two meanings, one is opposed to the lumped mass

method, and the other refers that the contribution of the higher-order term to the mass matrix

is also taken into account.

FORMULATION OF ELEMENT STIFFNESS MATRIX

Let us consider a simple two-node beam element. The element displacement vector qe

of a beam with nodes 1 and 2 is of the form



(27)

Corresponding to the strains defined in Eq. (4), the simplest nodal degrees of freedom at

node i, qi, can be chosen as

q, =[1, w,, w,=, o,]r’ i = 1,2 (28)

Consequently, a cubic interpolation for deflection w and a linear interpolation for rotation @

can be achieved. It follows from Eq. (4) that the resulting bending strain approximation is

constant over the element domain.

Corresponding to the strains defined in Eqs. (9) and (5), the simplest nodal degrees of

freedom at node i, qi, can be chosen as

qi ‘[” f,wf>w,~f>’Yf]T’ i = 1,2 (29)

The nodal variable vector above has the same number of degrees of freedom at each node as

that in Eq. (28). The nodal variables in Eq. (29) result in a cubic approximation for deflection

w and a linear transverse shear strain y. However, it follows from Eq. (9) that the cubic

interpolation of w gives a linear element bending strain.

Since the bending strain is the dominant term in bending problems, we can predict that

the strain expressions derived from the displacement filed defined in Eq. (6) would lead to a

more accurate solution than those given by the displacement of Eq. (1) in finite element

anal ysis, even though they have the same number of degrees of freedom at each node. This
prediction will be verified later by numerical examples.

The element strain matrices in Eq. (17) can be evaluated by the standard displacement-

based formulation. However, these matrices will be evaluated by the Quasi-conforming
element technique [2] in this work.

BEAM ELEMENT BASED ON EQ. (9): HQCB-8A

In the quasi-conforming element formulation [2], the element strain field is interpolated

directly over the element domain, and the compatibility in an element domain is satisfied in a

weak form. When the continuity along inter-element boundaries is satisfied a priori, the

element strain energy in Eq. (14) is modified as

U; =U~ +Jti(ej –e~)dx+~fi(en -ern)dx

where the prime signifies the assumed element strain field and ti , N, ~ and ~ are the test

functions corresponding to their relevant strains.

A cubic transverse displacement w and a linear rotation @can be interpolated over the

element from the element nodal variables. Then a suitable element strain field for the strains

defined in Eqs. (9) & (5) and tensile strain in Eq. (4) can be approximated as

d2wo dy ~ duo ,
——— —=eb=abl+ xab2, em=~=em= am,‘; – &2 dx

dy ~
y=2e$= a,, e~=~=eh, =cth (30)

Where (X~l(i = 1, 2), an, ~ and ~~~ are the assumed element strain parameters which can



be determined from the weak form of compatibility given in Eq. (29) at element level. The

influence of the y-axis is neglected in Eq. (30) as mentioned earlier.

Let the integrals for the weak form of strain compatibility in Eq. (29) be satisfied

individually, and let the test functions in Eq. (29) be the same as the trial functions. Then the

last four integrals in Eq. (29) lead to the strain matrices defined in Eq. (17) as

Bm=[-l/l O 0 0 1/1 O 0 o] (31)

B,=[O O 0 1/2 O 0 0 1/2] (33)

B,h=[O O 0 -1/1 O 0 0 w] (34)

onl% K~ involves a simple polynomial integration and it can be carried out easily. Therefore,

the resulting element stiffness matrix can be evaluated explicitly, which makes the resulting

beam element very computationally efficient. This beam element is designated as HQCB-8A

(8-dof Higher-order Quasi-Conforming Beam element).

The detailed evaluation of the element stiffness matrix based on the quasi-conforming

element technique can be found in Ref. 3.

BEAM ELEMENT BASED ON EQ. (l): HQCB-8B

For comparison, the element based on the strains defined in Eq.(4), and the nodal degrees

of freedom defined in Eq. (28) is also given here.

As in HQCB-8A, a cubic deflection w and a linear rotation @can be interpolated from

the element nodal displacements. However, the cubic w contributes only to the transverse

shear strain, but not to the bending strain which is the dominant term in beam analysis. For

the given nodal variables, a suitable element strain field can be assumed as

d@ I duo ,
eb. —.

dx eb=ab, em=~=e~=a~?

Where ab, am, ati (i = 1,2) and ah, are the assumed element strain parameters. Similar to

Eqs. (32), (33) and (34), one can obtain

B;=[O O 0 -1/1 O 0 0 w] (36)

[

o –1/1 o 1/2 o 1/1 o 1/2
B:= {1 x} 1 (37)

00 –1/1 –1/1 o 0 1/1 1/1

B:h =[0 O -1/1 -1/1 O 0 1/1 l/z] (38)

The superscript B here is used to distinguish the strain matrices above from those given in
Eqs. (32), (33) and (34). Bm is the same as that in Eq. (31 ). This beam element is designated

as HQCB-8B.

The mass matrices in Eqs. (26) can be calculated easily by the cubic interpolation for w
and linear interpolation for U. and y.



NUMERICAL EXAMPLES

The efficiency and accuracy of the element based on displacement defined in Eq. (9)

over that based on Eq. (1) is demonstrated by three examples in this section

EXAMPLE 1. Deflections of Isotropic Cantilevered Beam under Point Load at the Free End

To compare the performance of HQCB-8A and HQCB-8B, a cantilevered beam of length

L subjected to a concentrated tip load P is considered. The material of the beam is isotropic

with v = 0.3. The non-dimensional tip deflections for various aspect rations are given in

Table I. The non-dimensional deflection is defined as

D=
~=w~

The numerical results in the table clearly show that the performance of HQCB-8A is much

better than that of HQCB-8B as predicted, even though they have the same number of nodal

degrees of freedom. This is because HQCB-8A makes the best use of the nodal variables to

interpolate a linear bending strain, but HQCB-8B only has a constant bending strain.

EXAMPLE 2. Natural Frequencies of Simply Supported Composite Beams

A simply supported [0/90/90/0] composite beam is considered. The cross-ply beam has

four equal thickness laminae and aspect rations of L/h = 10. The material properties are

El IE2 = 25, G12 = G,q = 0.5EZ , G2~ = 0.2EZ, V12 = 0.3

The non-dimensional frequencies and central deflection under uniform pressure are tabulated

in Table II. All results are given by eight HQCB-8A elements. The non-dimensional

deflection frequency are defined as

bh3Ez
w = Wmm .102 and ZDi=@iL2~=, i = 1,2,3,4

pOL4

in which PO is the density of the uniform load. Because of the symmetric lamination, M ~Ow

and M ~xY are null. The influence of the mass matrix resulting from the higher-order

displacement M ~ and the mass matrix from the coupling of rotation and higher-order

displacement M ~xy are also given in the table. The finite element solutions given by

MSC/Nastran are listed in the table too, and eight 8-noded plate elements are used to model

the beam.

Table II demonstrates that MY and M ~xYhave no or little influence on the fundamental

and second mode frequencies, but they have a significant contribution on the frequencies of

higher modes. This conclusion is also true even in the case of isotropic beams as indicated in

Table III. The 3-D element results were obtained by 20-noded brick elements with a 4x8

mesh, and the 2-D solutions are given by eight 8-noded plate elements in MSC/Nastran.
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Table I. Non-dimensional tip deflections of isotropic cantilevered beam

aspect ratio L/h
Elements

5 10 1000

HQCB-8A(1 elem.) 0.3451 0.3363 0.3333

HQCB-8B (1 elem.) 0.3332 0.2543 0.2325

HQCB-8B (2 elem.) 0.3342 0.3179 0.3008

HQCB-8B (4 elem.) 0.3671 0.3379 0.3286

Analytical Solution 0.3436 0.3359 0.3333

Table II. Non-dimensional frequencies of simply supported [0/90/90/0] beam (L44=1O)

consistent no MY no M ~XY noMy &MWXY MSC/Nastran analytical
mass 2-D Model

a, 10.4784 10.4702 10.4611 10.4529 9.7513 10.4880

LTJ2 28.2852 27.9731 27.9443 27.6404 24.7609

q 60.2143 56.2691 56.8160 53.4422 39.9887

aJ4 82.1853 70,2370 72.1778 62.6374 54.0770

F 1.1364 1.3570 1.1375

Table III. Non-dimensional frequencies of simply supported isotropic beam (M=1O)

consistent no MY no M ~XY noMY &MWXY MSCINas- MSC/Nas-

mass tran 2-D tran 3-D

ZiJl 2.8016 2.8015 2.8013 2.8013 2.8161 2.8093

aJ2 10.6699 10.6680 10.6534 10.6615 10.6035 10.6635

q 22.1816 22.1422 22.0230 21.9822 23.0221 22.3620

04 35.2983 34.9908 34.5972 31.6181 37.4710 36.7079


