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ABSTR4CT
Self-excited vibration in cylindrical grinding is always experienced if the work speed is high. In this paper,

the effect of the work speed on the occurrence of self-excited vibration is investigated analytically and
numerically, and the amplitude and phase shift of the work vibration in the steady state is also determined, using
the averaging method with the nonlinearity of the damping force taken into consideration, If the work speed M

high, self-excited vibration always occurs. It is caused by that the phase of the work displacement is delayed by

/z 2 to that of previous grinding for all work speed. Consequently, in the steady state, if the grinding rate factor

is large, the amplitude of the self-excited vibration increases with increase of the work speed.

1. INTRODUCTION
It is generally accepted that self-excited vibration in machine tools is caused by the

regenerative effect [1,2] and it occurs if the work speed is high. It has been discussed the
approach to the early prediction of cutting chatter, considering cutting force[3]. In the
steady state, the stability and complicated dynamics of cutting is also discussed,
considering the nonlinear stiffness of the machine tool and regenerative terms[4,5]. The
self-excited vibrations under cutting are due to the time lag of the restoring force.

Self-excited vibration in cylindrical grinding is also caused by the time lag in the
restoring force term and has been studied about the work speed range when it occurs
analytically and experimentally [6,7]. The self-excited vibration with large amplitude is
experienced and often brings about troubles with unevenness on the surface of the work.
However, the general discussion about the reason why the self-excited vibration in
cylindrical grinding always occurs in the high speed range has not been done widely.

In this paper, we obtain the obvious approximate critical speed of the work, using
Nyquist’s stability criterion[8]. It is also shown that the delay of the phase of the work
displacement influences on the work speed range where self-excited vibration occurs.

Moreover, the amplitude and the phase shift from the previous grinding in the steady
state is investigated, considering the nonlinearity of the damping force.



2. ANALYTICAL MODEL AND GOVERNING EQUATION

The system under consideration(Fig.1) consists of a grinding wheel and a work,
where m is the mass of the work; k is the rate of the horizontal spring; c is the viscous
damping coefllcients of the work vibration; r is the radius of the work; v and P’ are the
constant rotation speeds of the work and the grinding wheel respectively. The work in its
equilibrium state has the displacement x~t. The motion of the work is confined to move

only horizontally.
Under the above assumptions, the equation governing the motion of the work is

derived. The following dimensionless variables will be used,

6= X1X,,, t*=tlT

where T = d-.

Considering the dynamic grinding force which is proportional to the work volume
removed in a unit time, the dimensionless equation governing the vibration of the work is
obtained as follows:

(1)

where cv~2 = 1+ K. f(t – r) indicates the work displacement of previous grinding, The

asterisks indicating the dimensionless time are omitted in the equation (1) and henceforth.
The dimensionless parameters involved in the equation (1) are expressed as follows:

k
y=

c+cep T, K=+,

2m
/j&f#T, ~.=,T

v
where c~Pand kep which depend on the work speed are the equivalent viscous damping

coefilcients and rate of the spring, considering the dynamic cutting force. Fig.2 shows the
values of these dimensionless parameters versus the work speed. In this system, K and
r are large and vary in the wide range.
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Fig. 1 Analytical model Fig.2 Values of dimensionless parameters
versus the work speed



3. WORK SPEED RANGE WHERE SELF-EXCITED VIBRATION OCCURS

The loop transfer fhnction of the linear system( ~ = O) is obtained as follows:

“(’”)=6 (2)

where

/

al’
tanq=2y — —

a:’ ‘1- con’ “
(3)

The system will be stable if Gl(ZO) does not enclose the point (z,O). Setting the

amplitude of the equation (2) equal to 1 and solving, we obtain

co2= @n2– (@n2–2y2)2 - (an4 -?C2) (4)

The magnitude of the radius vector of Gl(za) attains the value of 1 twice at 01 and U2.

It follows that the magnitude of the radius will be greater than 1 between al and 02,

and will be less than 1 everywhere else. In the case that the work speed is not so small, it
is shown that y << Kin Fig.2. Then we get the approximate solutions as follows:

.l.JS-.J-+O(Y’)

dco2= l+2y2 %l+o(y2).

Here, we set fll = ol~ + PI , /32 = @2r + P2. If Ifll – #21> 2Z, the system becomes

unstable because this condition is equivalent to that the Gl(z~) encloses (z,O). Using the

relation m1r, o zr >> PI, 92, this condition is represented approximately as follows:
T(O1– O’)>2Z. (5)

We find the following relations when the work speed is not so low(See Fig.2).
K>l, T = 0(1000) (6)

These equations denote respectively that the equivalent stiffness on grinding is larger
than the flexural rigidity of the work and the rotation period of the work is longer than
the natural period of the flexural vibration of the work. When the equations (6) are

satisfied, the equation (5) is always satisfied. In other words, if the equation G1(za~ =1

has two U2 >0, the system will be unstable. Therefore, we get the following
approximate unstable condition.

h=
K’ >1

(7)
4y2(@n2 –y2)

The maximum amplitude during the 10* revolution of the work is shown in Fig.3. It is
shown that the self-excited vibration always occurs if the work speed is high. Fig. 4 shows
the unstable condition from the equation (7). It is in good agreement with the numerical
result about the work speed range when the self-excited vibration occurs.

Fig. 5 shows values of al, CD2,PI, p2 and Ifll –f121. At the critical speed of the work,

ci)~ – 02 and & – f12 increase rapidly in the small range of the work speed. These

properties are due to the values of the parameters in cylindrical grinding system.
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4. AMPLITUDE AND PHASE SHIFT IN THE STEADY STATE

In this section, we consider the response of the nonlinear system( ~ = 4 ) in the steady

state. The solution of the equation (1) is assumed to have the forms
~= a(f) sin Ot + b(t) cosco t (8)

$(t -r)= a(t)sin[~(t - r)]+ b(t) cos[q(t - r)] (9)

where are assumed a(t – r)= a(t), Mt – r)s Wt). Substituting the equations (8) and
(9) into the equation (1) and using the method of averaging, we obtain

;=(-v;sima++ (02- Cl)n’+Kcosawy=(a’ +b’)
4

(lo)

db 1
--—(~’ -o.’ +~cosar)a+(-y -~sincor)b-~(a’ +b’)

z- 20
(11)

In the steady state, we obtain

(ii2+i2)(&a)n2+Kcos#r)=o (12)

(13)

where the tilde indicates to the stationary solution. From the equations (12) and (13), the

amplitude in the steady state ~ (12 = Z2 + ~ 2) is obtained.

Lo, (14)

(15)

Here, if we consider the equation (15),

(.i)2–mn2+KCOS/l)T= o (16)

The stability of the these vibrations can be obtained by letting,

a= Z+Aa, b=~+Ab (17)

Developing the right-hand sides of the equations (10) and (11) in powers of Aa and

Ab and keeping only linear terms, we have

dAa

[

sin@=_~(~z+~’) Aa+ “-m.’ fig ; K—= _y–:
1[

— CosCmT
1
Ab (18)

dt 4 2co 2 2cu

dAb

[

m’ –aln’ fig K

][

Cosfmr Aa+ –y–
P -2—= — -— ——

dt 2U 2 2m 1
~sincoc---(2h +~2) Ab (19)

If we let Aa = caefi and Ab= cbefi, we obtain the following the unstable condition.

(20)

The equations (15) and(20) show that the occurrence of the self-excited vibration

depends on the phase m.

It is known that the frequency of the self-excited vibration will be close to one of the

natural vibration. Then we let
m=mn+8 (21)



In numerical results, it is shown d<< 1. Substituting the equation (21) into the equation

(16), we obtain

Considering the grinding rate K is larger than 1, we obtain
~r_2n–1

–—7r+ o(d)
2

If A #O, sin UT <0 from the equation (15). Consequently,

@’r= –(; 7r+ 2?n7r)

(22)

(23)

we obtain

(24)

Hence it is presented that the phase of the work displacement is approximately delayed
by z/2 to that of previous grinding for all work speed.

If we assume the solutions (8) and (9), we obtain the following condition that the
supplied energy is larger than dissipated one.

K sin m < –2yco (25)

Using the relation (24), it is also shown that the condition (7) is approximately equivalent

to the condition (25).

Consequently, we obtain the following the solutions in the steady state.

~=~sin[cot-ti] ,
‘(’-’) =zsin[a’+;l;l

where

(26)

J2= ~(-y ++
P 2@~

(27)

The solutions (14) and (15) in the steady state and the border line of the stability from

the equation (20) are shown in Fig.6. The comparison between the analytical solutions

and the numerical ones is also shown in Fig. 7.

Fig.8 shows the time history of ~ and tj(~– r) in cases of v = 0.8m/s and v = 1.2m/s.

In these cases, the phase of the work displacement is delayed by z/2 to that of previous
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grinding. In Fig.9, asexpected, itisshown that thephase shifi is approximately z/2 for
all work speed.

Fig. 10 shows that the frequency of the self-excited vibration is close to the one of the
natural vibration. It is shown that the assumption o = On + d which we used in the

previous discussion was accurate.
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Fig.11 shows the comparison between the theoretical results and the experimental

ones from Ohno’s previous work[6]. The values of the dimensionless parameters in this

paper correspond to the principal data of the grinding machine which is used in the

experiment. Works aremade of the low carbon steel and are supported by centers atboth

ends. Coolant is not used because the vibrometer has to be kept dry. The feed of the
grinding wheel is continuously given. The theoretical results about the critical work

speed and the amplitude in the steady state are in qualitative agreement with the
experimental ones.

5. CONCLUSION

A self-excited vibration in cylindrical plunge grinding is investigated, considering
time lag and the nonlinear damping force term. The system which consists of the grinding
wheel and the work is regarded as the single-degree-of-freedom system. The effect of
the work speed on the occurrence of self-excited vibration and the amplitude and the
phase shift in the steady state are presented analytically and numerically. The main
results are as follows:

First, if the work speed is low, self-excited vibration does not occur. On the other
hand, if the work speed is high, self-excited vibration always occurs. The critical speed
of the work revolution is approximately given, using Nyquist’s stability criterion.

Second, if the grinding rate is large, the amplitude of the self-excited vibration in the
steady-state increases with increase of the work speed. It is caused by that the phase of
the work displacement is delayed by zJ/2 to that of previous grinding for all work speed.

The above theoretical results about the critical work speed and the amplitude of the

work vibration in the steady state are in good agreement with the experimental one.
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