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ABSTRACT
Self-excited vibration in cylindrical grinding is always experienced if the work speed is high. In this paper,
the effect of the work speed on the occurrence of self-excited vibration is investigated analytically and
numerically, and the amplitude and phase shift of the work vibration in the steady state is also determined, using
the averaging method with the nonlinearity of the damping force taken into consideration. If the work speed 1s
high, self-excited vibration always occurs. It is caused by that the phase of the work displacement is delayed by

ﬂ/ 2 to that of previous grinding for all work speed. Consequently, in the steady state, if the grinding rate factor
is large, the amplitude of the self-excited vibration increases with increase of the work speed.

1. INTRODUCTION

It is generally accepted that self-excited vibration in machine tools is caused by the
regenerative effect[1,2] and it occurs if the work speed is high. It has been discussed the
approach to the early prediction of cutting chatter, considering cutting force[3]. In the
steady state, the stability and complicated dynamics of cutting is also discussed,
considering the nonlinear stiffness of the machine tool and regenerative terms[4,5]. The
self-excited vibrations under cutting are due to the time lag of the restoring force.

Self-excited vibration in cylindrical grinding is also caused by the time lag in the
restoring force term and has been studied about the work speed range when it occurs
analytically and experimentally[6,7]. The self-excited vibration with large amplitude is
experienced and often brings about troubles with unevenness on the surface of the work.
However, the general discussion about the reason why the self-excited vibration in
cylindrical grinding always occurs in the high speed range has not been done widely.

In this paper, we obtain the obvious approximate critical speed of the work, using
Nyquist’s stability criterion[8]. It is also shown that the delay of the phase of the work
displacement influences on the work speed range where self-excited vibration occurs.

Moreover, the amplitude and the phase shift from the previous grinding in the steady
state is investigated, considering the nonlinearity of the damping force.



2. ANALYTICAL MODEL AND GOVERNING EQUATION

The system under consideration(Fig.1) consists of a grinding wheel and a work,
where m is the mass of the work; k is the rate of the horizontal spring; c is the viscous
damping coefficients of the work vibration; r is the radius of the work; vand V' are the
constant rotation speeds of the work and the grinding wheel respectively. The work in its
equilibrium state has the displacement x,. The motion of the work is confined to move
only horizontally.

Under the above assumptions, the equation governing the motion of the work is
derived. The following dimensionless variables will be used,

E=x/x,, =t/T
where T =~+/m /k .

Considering the dynamic grinding force which is proportional to the work volume
removed in a unit time, the dimensionless equation governing the vibration of the work is
obtained as follows:

d*¢ dg
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where w,,z =1+x. & - 1) indicates the work displacement of previous grinding. The
asterisks indicating the dimensionless time are omitted in the equation (1) and henceforth.
The dimensionless parameters involved in the equation (1) are expressed as follows:
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where c,, and k,, which depend on the work speed are the equivalent viscous damping

}/:

coefficients and rate of the spring, considering the dynamic cutting force. Fig.2 shows the
values of these dimensionless parameters versus the work speed. In this system, x and
7 are large and vary in the wide range.
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3. WORK SPEED RANGE WHERE SELF-EXCITED VIBRATION OCCURS

The loop transfer function of the linear system( f = 0) is obtained as follows:
Le—i(w7’-+¢)

2
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\/(1—9—2)2 +(2r—25)?
@p 247
where
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tan @ =2y 2/(1— ). (3)
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The system will be stable if G,(iw) does not enclose the point (i,0). Setting the
amplitude of the equation (2) equal to 1 and solving, we obtain

o’ =0, -2 ty(@,’ -2*) - (@, -« )

The magnitude of the radius vector of G,(iw) attains the value of 1 twice at @, and o, .

It follows that the magnitude of the radius will be greater than 1 between ®, and w,,

and will be less than 1 everywhere else. In the case that the work speed is not so small, it
is shown that y <<k in Fig.2. Then we get the approximate solutions as follows:

o} z\/l+2x—272 z\/1+2x+0(y2)
w, ~ 14272 =1+ 0(7?).

Here, we set fB1=w T+@, , Py =0,7+@, If |B) — Ba|>2r7, the system becomes
unstable because this condition is equivalent to that the G,(iw) encloses (7,0). Using the
relation @17, @57 >> @1, @5, this condition is represented approximately as follows:

(@) - ©,)>27. 5)
We find the following relations when the work speed is not so low(See Fig.2).
xk>1 7=0(1000) (6)

These equations denote respectively that the equivalent stiffness on grinding is larger
than the flexural rigidity of the work and the rotation period of the work is longer than
the natural period of the flexural vibration of the work. When the equations (6) are

satisfied, the equation (5) is always satisfied. In other words, if the equation ‘Gl(ia))’:l

has two ®?>0, the system will be unstable. Therefore, we get the following

approximate unstable condition.

K_Z

4’ (@, ~7r?)
The maximum amplitude during the 10® revolution of the work is shown in Fig.3. It is
shown that the self-excited vibration always occurs if the work speed is high. Fig.4 shows
the unstable condition from the equation (7). It is in good agreement with the numerical
result about the work speed range when the self-excited vibration occurs.
Fig.5 shows values of w,,®,,¢,, ¢, and |,H1 - ,32|. At the critical speed of the work,

h

>1 (7

lo, - w,| and |B, — B,| increase rapidly in the small range of the work speed. These
properties are due to the values of the parameters in cylindrical grinding system.
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4. AMPLITUDE AND PHASE SHIFT IN THE STEADY STATE

In this section, we consider the response of the nonlinear system( f = 4) in the steady
state. The solution of the equation (1) is assumed to have the forms
E=a(t)sinwt+b(t)cosw t (8)
&t - 7) = a(t)sinfw(t - )]+ b(t) cos[w(t - 7)] 9)
where are assumed a(f—7)=a(t), Bt-7)=b(t). Substituting the equations (8) and
(9) into the equation (1) and using the method of averaging, we obtain

% =(-y —%sin wr)a+—21;(co2 —w,’ +Kcosa)r)b-%(a2 +b%) (10)
db 1 2 2 K . ﬂb 2 2
—=—-—(w" - + +(=y —— b-——(a"+b 11
o oy (0* —w,” +xcoswr)a+(-y > sin w7) 2 (a ) (11)
In the steady state, we obtain
@ +b*)0* -0, +xcoswr)=0 (12)
@? +32)[—y—isinm—ﬁ(a'2 +52)}=o (13)
2w 4

where the tilde indicates to the stationary solution. From the equations (12) and (13), the
amplitude in the steady state A4 2=3%+b 2) is obtained.

A=0, (14)
Z:\/i(—y——’(—sinwr) (15)
Yo 2w
Here, if we consider the equation (15),
wz—wn2+rccosa)r:0 (16)
The stability of the these vibrations can be obtained by letting,
a=d+Aa, b=b+Ab (17)

Developing the right-hand sides of the equations (10) and (11) in powers of Aaand
Ab and keeping only linear terms, we have

— s 2 _ 2 = 7
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Ifwelet Aa= cae” andAb=c be’u , we obtain the following the unstable condition.
~ 2 K
A% > —(— — —sin ) 20
7 ¥ 5g ST (20)

The equations (15) and(20) show that the occurrence of the self-excited vibration
depends on the phase wr.
It is known that the frequency of the self-excited vibration will be close to one of the

natural vibration. Then we let
w=w,+06 (21)



In numerical results, it is shown & <<1. Substituting the equation (21) into the equation
(16), we obtain

s\ 2
cosan'z(w o) —~w _ 26N+ K +0(6 )so(é‘) 22)
K K
Considering the grinding rate « is larger than 1, we obtain
wr=2""1 11005 (23)

If A#0, sinwr <0 from the equation (15). Consequently, we obtain
oT ~ —(% 7T +2mrx) ' (24)

Hence it is presented that the phase of the work displacement is approximately delayed
by 7/2 to that of previous grinding for all work speed.

If we assume the solutions (8) and (9), we obtain the following condition that the
supplied energy is larger than dissipated one.

K Sin o7 < —2yw (25)
Using the relation (24), it is also shown that the condition (7) is approximately equivalent
to the condition (25).
Consequently, we obtain the following the solutions in the steady state.

EzZsin[col—@] , E(t—r)zZsin[wt+§—5j| (26)
where

~ i _ K

A—\/ﬂ( 7+2wn) (27)

The solutions (14) and (15) in the steady state and the border line of the stability from
the equation (20) are shown in Fig.6. The comparison between the analytical solutions
and the numerical ones is also shown in Fig.7.

Fig.8 shows the time history of & and &(f - 7) in cases of v=08m/s and v=12m/s.
In these cases, the phase of the work displacement is delayed by 7/2 to that of previous
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grinding. In Fig.9, as expected, it is shown that the phase shift is approximately 7/2 for
all work speed.

Fig.10 shows that the frequency of the self-excited vibration is close to the one of the
natural vibration. It is shown that the assumption @ =@, +& which we used in the

previous discussion was accurate.
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Fig.11 shows the comparison between the theoretical results and the experimental
ones from Ohno’s previous work[6]. The values of the dimensionless parameters in this
paper correspond to the principal data of the grinding machine which is used in the
experiment. Works are made of the low carbon steel and are supported by centers at both
ends. Coolant is not used because the vibrometer has to be kept dry. The feed of the
grinding wheel is continuously given. The theoretical results about the critical work
speed and the amplitude in the steady state are in qualitative agreement with the
experimental ones.

5. CONCLUSION

A self-excited vibration in cylindrical plunge grinding is investigated, considering
time lag and the nonlinear damping force term. The system which consists of the grinding
wheel and the work is regarded as the single-degree-of-freedom system. The effect of
the work speed on the occurrence of self-excited vibration and the amplitude and the
phase shift in the steady state are presented analytically and numerically. The main
results are as follows:

First, if the work speed is low, self-excited vibration does not occur. On the other
hand, if the work speed is high, self-excited vibration always occurs. The critical speed
of the work revolution is approximately given, using Nyquist’s stability criterion.

Second, if the grinding rate is large, the amplitude of the self-excited vibration in the
steady-state increases with increase of the work speed. It is caused by that the phase of
the work displacement is delayed by 7/2 to that of previous grinding for all work speed.

The above theoretical results about the critical work speed and the amplitude of the
work vibration in the steady state are in good agreement with the experimental one.
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