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ABSTRACT

This paper presents an investigation into the development of an intelligent neuro-active noise
control strategy which accounts for both linear and nonlinear dynamics of the system. Multi-
layered perception neural networks with a backpropagation learning algorithm and radial
basis function neural networks with an orthogonal forwad regression algorithm are
considered in both the modelling and control contexts. A feedforward active noise control
(ANC) structure is considered for optimum cancellation of broadband noise in a three-
dimensional propagation medium. An on-line adaptation and training mechanism allowing a
neural network architecture to characterise the optimal linear controller and nonlinear system
dynamics within the ANC system is developed. l%e neuro-adaptive ANC algorithm thus
developed is implemented within a fro-field environment and simulation results verifying its
performance in the cancellation of broadband noise are presented and discussed.

Keywords: Active noise control, adaptive control, backpropagation, multi-layered
perception networks, neural networks, orthogonal forward regression, radial basis function
networks.

1. INTRODUCTION

Active noise control (ANC) consists of artdlcially generating canceling source(s) to
destructively interfere with the unwanted source and thus nixult in a reduction in the level of
the noise (disturbance) at desired location(s). This is realised by detecting and processing the
noise by a suitable electronic controller so that when superimposed on the disturbance
cancellation occurs (Leitch and Tokhi, 1987). Due to the broadband nature of the noise, it is
required that the control mechanism realises suitable frequency-dependent characteristics so



that cancellation over a broad range of frequencies is achieved (Leitch and Tokhi, 1987). In
practice, the spectral contents of the noise as well as the characteristics of system
components are in general subject to variation, giving rise to time-varying phenomena. This
implies that the control mechanism is further required to be intelligent enough to track these
variations, so that the desired level of performance is achieved and maintained (Leitch and
Tokhi, 1987; Tokhi and Leitch, 1991). Such a strategy can be devised through the
development of neural network architectures within an adaptive control framework. There
has been considerable work on devising various methodologies for active control of noise
(Elliott et al., 1987; Leitch and Tokhi, 1987; Snyder and Hansen, 1991; Tokhi and Leitch,
1991). However, little work has been reported on the development of intelligent methods
incorporating neural networks for noise cancellation (Tokhi and Wood, 1996).

Considerable research interest in neural networks has been shown during the last decade
in various applications. It has been demonstrated that neural networks can successfully be
used to model non-linear system dynamics. Previous studies have further shown that neural
networks can be used to solve nonlinear control problems (Lapedes and Farber, 1987;
Narendra and Parthasarathy, 1990). Neural networks can also be used to approximate any
function (Leshno, 1993). In this paper, a control strategy is developed within a decoupled
lineadnon-linear system framework. It is evidenced in previous studies that in an ANC
system the characteristics of the transducers and electronic components used dominantly
contribute to the non-linear dynamics of the system. This allows the explicit identi.ilcation of
linear and non-linear components within the ANC structure and development of the
corresponding neuro-control strategy. Two alternative methods are proposed and verified in
this paper on the basis of this strategy. The paper is presented as follows

Section 2 presents a brief outline of neural networks utilised in this work. Section 3
presents the ANC structure with the controller design relations and the neuro-control
strategy. Section 4 presents several simulated exercises verifying the performance of the
control strategy in the cancellation of broadband noise in a free-field medium. The paper is
finally concluded in Section 5.

2. NEUR4L NETWORKS

There are many different classes of tilcial neural network models. Among these the multi-
layered perception (MLP) and radial basis function (RBF) networks are commonly used in
the modelling and control of dynamic systems. An MLP network is made up of sets of nodes
arranged in layers corresponding to the input layer, the output layer and several hidden
layers. The structure of an RBF neural network is similar to that of an MLP network, except
that the network consists of only a single hidden layer.

Neural network models attempt to achieve good performance through the process of
adapting the weight connections of the neurons through the process of learning. The learning
process can be described as an optimisation problem. Theoretical investigations have
rigorously proved that multi-layered neural networks can uniformly approximate any
continuous function (Homik et aL, 1989). This potential of neural networks is exploited in
this work at the development of a neuro-adaptive active control mechanism for broadband
cancellation of noise.

In an MLP network the output of each node, except those in the input layer, is computed
as a non-linear function of the weighted sum of its inputs. The network commonly uses the
backpropagation training algorithm to adapt the connection weights. The backpropagation



training algorithm is a gradient search (steepest descent) method which adjusts the weights
so that application of a set of inputs produces the desired outputs. An advanced
backpropagation algorithm is utilised in this investigation (Tokhi and Wood, 1996). The
algorithm uses a better initialisation of the weights and biases which drastically reduce the
training time (Nguyen and Widrow, 1990). Moreover, an adaptive learning rate is employed
which helps the network avoid local error minima.

An RBF expansion provides a mapping that can be implemented in a two-layered neural
network structure. In this manner, the f~st layer performs a freed non-linear transformation
which maps the input space onto a new space. The output layer implements a linear combiner
on this new space. Therefore, the RBF expansion can be viewed as a two-layered neural
network which has the important property that it is linear in the unknown parameters.
Therefore, the problem of determining the parameter values is reduced to one of a linear least
squares optimisation. Since RF3Fexpansions are linearly dependent on the weights, a globally
optimum least squares interpolation of non-linear maps can be achieved. An orthogonal
forward regression algorithm is utilised in this work to train the network (Tokhi and Wood,
1996).

3. NEURO-ACTIVE NOISE CONTROL

3.1 Control structure

A schematic diagram of the ANC structure is shown in Figwe l(a). An unwanted (primary)
point source emits broadband noise into the propagation medium. This is detected by a
detector, processed by a controller of suitable transfer characteristics and fed to a canceling
(secondary) point source. The secondary signal thus generated is superimposed on the
primary signal so that to achieve cancellation of the noise at and in the vicinity of an
observation point. A fnxpency-domain equivalent block diagram of the ANC structure is
shown in Figure l(b), where E, F, G and H are transfer characteristics of the acoustic
paths through the distances r,, rf, ~r and rh respectively. M, C and L are transfer

characteristics of the detector, the controller and the secondary source respectively. U~ and

Uc are the primary and secondary signals at the source locations whereas YO~and YOCare

the corresponding signals at the observation point respectively. UM is the detected signal and

YOis the observed signal.

The objective in Figure 1 is to force YOto zero. This requires the primary and secondary

signals at the observation point to be equal in amplitudes and have a phase difference of 180°
relative to each other. Thus, synthesising the controller within the block diagram of Figure
l(b) on the basis of this objective yields

c= b

ML(FG - EH)
(1)

This is the required controller transfer function for optimum cancellation of broadband noise
at the observation point.



1
I

I
d

r,
Controller

/

se.Z/
source

‘8

Observer

?

Observed
signal

(a) Schematic diagram.

~

(b) Block diagram.

Figure 1: Active noise control structure.

3.2 Training and adaptation

The dominant non-linear dynamics in an ANC system can be thought as those present within
the characteristics of transducers and electronic components used. These characteristics in
general take the form of an (amplitude) limiting transformation; that is, the inputioutput
transformation is linear up to a certain input signal level and reaches saturation (non-linear
behaviour) beyond this level. Note in the ANC structure shown in Figure 1 that the detector,
secondary source and associated electronics are all in cascade with one another. This allows
the nonlinear dynamics pnxent in these components to be lumped together as a single
function, ~n, in cascade with the controller.

To achieve cancellation of the noise at the observation point, the controller in an ANC
system is principally required to compensate for the characteristics of the system components
in the secondary path so as to result in 180° phase difference of the secondary signal relative



to the primary signal at the observation point. This compensation for the detector, secondary
source and their associated electronics, as noted in the design relation in equation (1), appear
inversely. This implies that, for optimum cancellation to be achieved at the observation point,
the controller is, additionally required to compensate for the non-linear function ~~. Thus, to

develop a neuro-adaptive ANC strategy, two alternative schemes namely direct function
learning (DFL) and inverse function learning (IFL) are proposed. These are schematically
outlined in Figure 2, where ‘ideal controller’ represents the characteristics in equation (1)
corresponding to linear dynamic characteristics of the system. In this process, the linear and
nonlinear dynamics of the system can be estimated/measured by exciting the system with
small signal and large signal levels accordingly.
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Figure 2: Neuro-ANC learning schemes incorporating nonlinear dynamics.

It follows from Figure 2(a) that realisation of the DFL requires a characterisation of the
nonlinear function ~n. This can, in practice, be achieved by driving the detector (microphone)

and secondary source (loudspeaker) in cascade as a unit, with an acoustic separation between
them, by a signal of large enough amplitude to drive the unit into its non-linear dynamic
range, and training a neural network to characterise the unit. This will result in a neural



network emulator characterizing the nonlinear function ~n. Note in this process that, the
characteristics of the acoustic path between the loudspeaker and the microphone will not
dominantly affect the characteristic behaviour of the non-linear dynamics of the unit. In this
manner, the direct nonlinear function emulator (DNFE) can be used to represent the
nonlinear function ~n in Figure 2(a) and thus train the neuro-controller accordingly. The

neuro-controller thus obtained can be used within the ANC system in Figure 1 for broadband
cancellation of noise at the observation poin~

It follows from Figure 2(b) that realisation of the IFL scheme requires a suitable

characterisation of the inverse nonlinear function ~~-1. This can be achieved in a similar

manner as above by training a neural network to the inverse of ~~. This will result in an
inverse nonlinear function emulator (INFE). The neural network INFE thus obtained can be
used within the IFL scheme of Figure 2(b), replacing the inverse non-linear function block, to
train the required neuro-controller. The neuro-controller thus obtained can be used within the
ANC system in Figure 1 for broadband cancellation of noise at the observation point.

In selecting the topology of the neural networks, it is assumed that the output of the
plant is a non-linear function of the present and past outputs and inputs of the plant. This
means that the input vector to the network consists of both the inputs and outputs of the
plant.

4. IMPLEMENTATION AND RESULTS

To ver@ the neuro-ANC algorithm a simulation environment characterizing a f~-field
medium was created using experimentally measured data. A tansigmoid function was
incorporated within the simulation environment to represent the nonlinear dynamics, &, of

the system. The characteristics of the ideal controller were measured and used within the
schemes in Figure 2 to train the neuro-controller accordingly. A O– 500 Hz PRBS signal, of
sufficient amplitude exciting the fill range of $., was used as the broadband primary noise

within the ANC structure in Figure 1.
The DFL scheme was realised with MLP networks. The IFL scheme, on the other hand,

was realised with MLP as well as RBF networks. The neuro-controllers thus obtained were
implemented within the ANC system and their performances were measured at the
observation point. Figure 3 shows the performance of the system with the MLP neuro-
controller trained according to the DFL scheme. Figure 4 shows the performance of the
system with the MLP and RBF neuro-controllers trained according to the IFL scheme. It is
noted that in each case an average level of above 35 dB cancellation is consistently achieved
over the broad frequency range of the noise with the neuro-ANC system.

5. CONCLUSION

A neuro-active control mechanism for broadband cancellation of noise has been presented
and verified through simulation exercises. The active control system developed has
incorporated on-line modelling of the ideal controller and training of the neuro-controller
using a decoupled lineadnonlinear system strategy. Two alternative methods, namely, the
direct function learning and inverse function learning schemes have been proposed. Both
MLP and RBF networks have been utilised in realising the neuro-controller. The neuro-
control strategies thus developed have been verified within an ANC structure in a free-field



environment. It has been shown that significant levels of performance is achieved in the
cancellation of broadband noise with the neuro-controller thus developed.
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Figure 3: Cancelled spectrum with the MLP neuro-controller (DFL scheme).
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Figure 4: Cancelled spectrum using IFL scheme.
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