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ABSTRACT

The performance demands in practical nmlisation of signal processing and control strategies
have-motivated a trend towards utilisation of complex algorithms. This, in turn, has resulted
in a resurgence in the development of high-performance processors to make real-time
implementation of such algorithms feasible in practice. However, due to inefficient mapping
of algorithms on processors, to take account of the computing capabilities of processors in
relation to the computing requirements of the application, such a goal can still be difficult to
reach. This paper presents an investigation into the development of sequential and parallel
computing methods for real-time signal processing and control. Several algorithms
encountered in acoustics and vibration applications are considered. These are implemented
on a number of high-performance processors including the TMS320C40 parallel digital signal
processing device, the Intel i860 vector processor and the Inmos T805 transputer. A
comparative assessment of the performance of the processors in implementing the
algorithms, revealing the capabilities of the processors in relation to the nature of the
algorithms, is presented. This is used as the basis of development of new performance
metrics and task to processor mapping strategies for parallel architectures. The performance
metrics and mapping strategies thus developed are verified by implementing the algorithms
on a number of homogeneous and heterogeneous parallel amhitectures.

Keywords: Heterogeneous architectu~s, homogeneous architectures, parallel processing,
nxi.1-timesignal processing and control, sequential processing.

1. INTRODUCTION

A real-time system can be regarded as one that has to respond to externally-generated stimuli
within a ftite and speciiled period. Despite the vastly incnased computing power which is



now available there can still be limitations in computing capability of digital processors in
real-time signal processing and control applications for two reasons: (a) sample times have
become shorter as greater performance demands are imposed on the system, (b) algorithms
are becoming more complex as the development of control theory leads to an understanding
of methods for optirnising system performance. To satisfy these high performance demands,
microprocessor technology has developed at a rapid pace in recent years. This is based on (i)
processing speed, (ii) processing ability, (iii) communication ability, and (iv) control ability.

Digital signal processing (DSP) devices are designed in hardware to perform concurrent
add and multiply instructions and execute irregular algorithms efficiently, typically ftite-
irnpuke response (FIR) and infiite-impulse response (IIR) fflter algorithms. Vector
processors are designed to efficiently process regular algorithms involving matrix
manipulations. However, many demanding complex signal processing and control algorithms
can not be satisfactorily realised with conventional computing methods. Alternative strategies
where high-performance sequential and parallel computing methods are employed, could
provide suitable solutions in such applications @okhi and Hossain, 1996).

Parallel processing (PP) is a subject of widespread interest for real-time signal processing
and control. In a conventional parallel system all the processing elements (PEs) are identical.
This architecture can be described as homogeneous. However, many algorithms are
heterogeneous, as they usually have varying computational requirements. The
implementation of an algorithm on a homogeneous architecture is constraining, and can lead
to inefficiencies because of the mismatch between the hardware requirements and the
hardware resources. In contrast, a heterogeneous architecture having PEs of different types
and features can provide a closer match with the varying hardware requirements and, thus,
lead to performance enhancement. However, the relationship between algorithms and
heterogeneous architectures for real-time control systems is not clearly understood. To
exploit the heterogeneous nature of the hardware it is requinxl to identify the heterogeneity
of the algorithm so that a close match can be forged with the hardware resources available
(Baxter et al., 1994).

For sequential and parallel processing with widely different architectures and different
PEs, performance measurements such as million instructions per second (MIPS), million
operation per second (MOPS) and million floating-point operations per second (MFLOPS)
of the PEs are meaningless. Of more importance is to rate the performance of each
architecture with its PEs on the type of program likely to be encountered in a typical
application. The different architectures and their diffenmt clock rates, memory cycle times of
the PEs, inter-processor communication speed, optimisation facility and compiler
performance etc. all confuse the issue of attempting to rate the architecture. This is an
inherent difficulty in selecting a parallel architectu~, for better performance, for algorithms in
signal processing and control system development applications. The ideal performance of a
parallel architecture demands a perfect match between the capability of the architecture and
the program behaviour. Capability of the architecture can be enhanced with better hardware
technology, innovative architectural features and efficient resources management. In contrast,
program behaviour is difficult to predict due to its heavy dependence on application and run-
time conditions. Moreover, there are many other factors that influence program behaviour.
These include algorithm design, partitioning and mapping of an algorithm, inter-processor
communication, data structures, language efficiency, programmer skill, and compiler
technology (Hwang, 1993; Tokhi et al., 1995). The purpose of this investigation is to
provide a coherent analysis and evaluation of the performance of sequential and parallel



computing techniques for real-time signal processing and control applications. The paper is
structured as follows

Section 2 provides a brief description of the computing platforms and software resources
utilised. Section 3 presents a brief description of the signal processing and control algorithms
utilised in this work. Section 4 presents performance metrics in sequential and parallel
processing. Section 5 gives a generalised task to processor allocation in parallel architectures.
Section 6 pments results and discussion of implementation of the algorithms on the
processors and performance evaluation of the computing platforms. The paper is f~y
concluded in Section 7.

2. HARDWARE AND SOFTWARE PLATFORMS

The hardware architectures utilised incorporate the Intel 80860 (i860) RISC processor, the
Texas Instruments TMS320C40 (C40) DSP device and the Inmos T805 (T8) transputer.
These are used as uni-processor architectures as well as in devising various heterogeneous
and homogeneous parallel architectures. These are briefly described below.

The i860 is a 64-bit vector processor with 40 MHz clock speed, a peak integer
performance of 40 MIPS, 8 kBytes data cache and 4 kBytes instruction cache, and is capable
of 80 MFLOPS. This is a superscalar RISC processor (Hwang, 1993). The C40 is a 32-bit
DSP device with 40 MHz clock speed, 8 kBytes on-chip RAM, and 512 bytes on-chip
instructions cache, and is capable of 275 MOPS and 40 MFLOPS. The device possesses six
parallel high-speed communication links for inter-processor communication (Texas
Instruments, 1991a).

The T8 is a general-purpose medium-grained 32-bit Inmos parallel PE with 25 MHz
clock speed, yielding up to 20 MIPS performance, 4 kBytes on-chip RAM and is capable of
4.3 MFLOPS. The T8 is a RISC processor possessing an on-board 64-bit floating-point unit
and four serial communication links (Tkanstech Parallel Systems Ltd, 1991).

The homogeneous architectures considered include a network of C40S and a network of
T8s. A pipeline topology is utilised for these architectures, on the basis of the algorithm
structure, which is simple to realise and is well reflected as a linear farm (Irwin and Fleming,
1992). The homogeneous architecture of C40S comprises a network of C40S resident on a
Transtech TDM41O motherboard and a TMB08 motherboati incorporating a T8 as a root
processor. The C40S communicate with each other via parallel communication links. The
homogeneous architecture of T8s comprises a network of T8s resident on a Transtech
TMB08 motherboard. The serial links of the processors are used for communication with one
another.

Two heterogeneous parallel architectures, namely, an integrated i860 and T8 system and
an integrated C40 and T8 system, are considenxl in this study. The i860+T8 architecture
comprises an IBM compatible PC, A/D and D/A conversion facility, a TMB 16 motherboard
and a lTM 110 board incorporating a T8 and an i860. The i860 and the T8 processors
communicate with each other via the shared memory. In the C40+T8 architecture the T8 is
used both as the root processor providing an interface with the host, and as an active PE.
The C40 and the T8 communicate with each other via serial-to-parallel or parallel-to-serial
links.

The compilers used consist of the Inmos ANSI C (for T8), Portland Group ANSI C (for
i860) 3L Parallel C (for C40 and T8) and Occarn (for T8). For the implementations involving
the T8, as will be noted later, the ANSI C compiler is used in investigations involving
performance evaluations of the hardware architectures in implementing the algorithms



whereas the 3L Parallel C and Occam are used in investigations involving the performance
evaluation of the compilers.

3. ALGORITHMS

The algorithms considered in this investigation are briefly described in this section.

3.1 The fast Fourier transform

Fast Fourier transform ~) constitutes a class of algorithms devised for the efficient
computation of discrete Fourier transforms (DFT) of sequences. A real periodic discrete-time
signal x(n) of period N can be expressed as a weighted sum of complex exponential

sequences. Since sinusoidal sequences are unique only for disc~te frequencies from O to
2X , the expansion contains only a ftite number of complex exponential. The complex DFT
series X(k) of x(n) can be written as

N-1
x(k)=~x(n)wy (1)

“=0

where WN=exp(-j 27r/N). Using the divide-and-conquer approach, equation (1) can be

simplified as

‘(p3q)=Mw$Ex(’m)w(2)

Equation (2) involves the computation of DIW of sequences of lengths M and L
respectively. In this manner, the total computation will be half of that of a direct DIW
computation (Ifeachor and Jervis, 1993).

3.2 Cross-correlation

Cross-correlation is a measum of the similarity between two waveforms. Consider two signal
sequences x(n) and y(n), each having ftite energy. The cross-correlation of x(n) and y(n)

is a sequence rW(1), defined as

rv (2)= ~x(n)y(n – 1); 1= 0,*1,... (3)
“.-m

or, equivalently, as

.

rw(1)= ~ X(7Z+ l)y(n) 1=0,*1,... (4)
n=-

A shifting x(n) to the left by 1 units relative to y(n) is equivalent to shifting y(n) to the

right by 1 units relative to x(n), the computations in equations (3) and (4) each yield

identical cross-correlation sequences (Ifeachor and Jervis, 1993).



3.3 LMS filter

The least mean square (LMS) adaptive falter algorithm is based on the steepest descent
method where the weight vector is updated according to (Widrow et al., 1975)

Wk+,= Wk – 2ekpXk

where Wk and X~ are the weight and the input signal vectors at time step k respectively, p.

is a constant controlling the stability and rate of convergence and e~ is the error given by

e,= Y, -w%
where y~ is the current contaminated signal sample. The weights obtained by the LMS

algorithm are adjusted so that the falter learns the characteristics of the signal leading to a
convergence of the weights.

3.4 RLS filter

The recursive least squares (RLS) adaptive falter algorithm is based on the well-known least-
squares method. An output signal y(k) of the falter is measured at the discrete time k, in

response to a set of input signals x(k) (Tokhi and hitch, 1992). The error variable is given

by

E(k) = Y(k)e(k – 1)– y(k)

where @ and Y represent the parameter vector and the observation matrix of the falter
respectively. The new parameter vector is given by

e(k) = @(k- 1)- P(k - l)w(k)[l+ Y(k)P(k - l)Y’(k)r&(k)

with P(k), representing the covariance matrix at time step k, given by

P(k) =F’(k-l)- P(k- l)YT(k)[l+Y(k)P(k - l)YT(k)rY(k)P(k - 1)

The performance of the falter can be monitored by observing the error variable e(k) at each

iteration.

3.5 The DOT algorithm

The DOT algorithm is a basic linear algebraic operation, which incorporates floating-point
add and multiply operations and takes one processor cycle to ftih. It is assumed that each
memory operation, including read and write, takes one processor cycle to ftih (Sun and
Gustafson, 1991). The DOT algorithm is given as

y(i) = a + b(i) x c(i)

whe~ a, b and c represent ml numbers.



3.6 Simulation and active vibration control of a flexible beam structure

Consider a cantilever beam system with a force I@, t) applied at a distance x from its fixed

(clamped) end at time t. This will result in a deflection y(x, t) of the beam from its stationary

position at the point where the force has been applied. In this manner, the governing dynamic
equation of the beam is given by

~, a’y(x,t) + a’y(x,t) = 1
; F(x,t)

ax’ at’ (5)

where, L is a beam constant and m is the mass of the beam. Discretising the beam into a

finite number of sections (segments) of length k and considering the deflection of each
section at time steps At using the central ftite difference (FD) method, a discrete
approximation to equation (5) can be obtained as (Tokhi and Hossain, 1994)

Yk+l=–q_l-L’sq +NF(xJ)
m

(6)

where l.= = ~’ (At)2/(Ax)’, S is a pentadiagonal matrix, entries of which depend on the

physical properties and boundary conditions of the beam, and ~ (i= k + 1,k,k – 1) is a

vector repenting the deflection of end of seetions 1 to n of the beam at time step i.
Equation (6) is the nquired relation for the simulation algorithm that can easily be
implemented on a digital computer.

A single-input single-output active vibration control system is considered for vibration
suppression of the beam. The unwanted (primary) disturbance is detected by a detection
sensor, processed by a controller to generate a candling (secondary, control) signal so as to
achieve cancellation at an observation point along the beam. The objective is to achieve total
(optimum) vibration suppression at the observation point. This ~quires the primary and
secondary signals at the observation point to be equal in amplitudes and to have a 180° phase
diffemce. Synthesizing the controller on the basis of this objective will yield the required
controller transfer function as (Tokhi and Hossain, 1994)

C=[l-QI/Q]-’ (7)

where QOand Q1 represent the equivalent transfer functions of the system (with input at the

detector and output at the observer) when the secondary source is ofl and on respectively.
Equation (7) is the required controller design rule which can easily be implemented on-line.
This will involve estimating QO and Q1, using a suitable system-identitlcation algorithm,

designing the controller using equation (7) and implementing the controller to generate the
canceling signal. An RLS parameter-estimation algorithm is used to estimate QOand Q1 in

the discrete-time domain in parametric form. Thus, the beam simulation algorithm comprises
equation (6), the identification algorithm is refed to as estimation of QO and Q1 with

calculation of the controller parameters according to equation (7) and implementation of the
controller constitutes the beam control algorithm. Note that the simulation algorithm is an
integral part of the control algorithm.



4. PERFORMANCE METRICS

A commonly used measure of performance of a processor in an application is speedup. This
is defined as the ratio of execution time of the processor in implementing the application
algorithm relative to a reference time or execution time of a reference processor (Tokhi and
Hossain, 1995).

For PP, speedup ( S~) is &fmed as the ratio of the execution time ( ~ ) on a single

processor to the execution time ( TN) on N processors;

SN= ~/TN

The theoretical maximum speed that can be achieved with a parallel architecture of N
identical processors working concurrently on a problem is N. This is known as the “ideal
speedup”. In practice, the speedup is much less, since some processors are idle at times due
to conflicts over memory access, communication delays, algorithm inefllciency and mapping
for exploiting the natural concurrency in a computing problem (Hwang and Briggs, 1985).
But, in some cases, the speedup can be obtained above the ideal speedup, due to anomalies in
programming, compilation and architecture usage. For example, a single-processor system
may store all its data off-chip, whereas the multi-processor system may store all its data on-
chip, leading to an unpredicted increase in performance.

When speed is the goal, the power to solve problems of some magnitude in a reasonably
short period of time is sought. Speed is a quantity that ideally would increase linearly with
system size. Based on this reasoning, The isospeed approach, described by the average unit
speed as the achieved speed of a given computing system divided by the number of
processors N, has previously been proposed (Sun and Rover, 1994). This provides a
quantitative measure of describing the behaviour of a parallel algorithm-machine combination
as sizes are varied.

Another useful measure in evaluating the performance of a parallel system is efllciency
(EN ). This can be defined as

‘N ‘(sNfN)xlm ‘=(T/mN)xlw %

Efficiency can be interpreted as providing an indication of the average utilisation of the ‘N‘
processors, expressed as a percentage. Furthermore, this measure allows a uniform
comparison of the various speedups obtained from systems containing different number of
processors. It has also been illustrated that the value of efficiency is directly related to the
granularity of the system. Although, speedup and efficiency and their variants have widely
been discussed in relation to homogeneous parallel architectures. Not much has been
reported on such performance measures for heterogeneous parallel architectures.

4.1 Sequential processing

It has previously been reported that the performance of a processor, as execution time, in
implementing an application algorithm generally evolves linearly with the task size (Tokhi et
al., 1996). This means that a quantitative measure of performance of a processor in an
application can adequately be given by the average ratio of task size to execution time or the
average speed. Alternatively, the performance of the processor can be measured as the
average ratio of execution time per unit task size, or the average (execution time) gradient. In



this manner, a generalised performance measure of a processor relative to another processor
in an application can be obtained.

Let the average speeds with two processors PI and Pz in anapplication, over a range of

task sizes, be denoted by ~ and L nqwtively. The generalised sequential (execution time)

speedup SV2of PI dritive to Pz in implementing the application algorithm can thus be

defined as

Alternatively, if the corresponding average gradients with PI and Pz for the application, over
a range of task sizes, are given by G, and Gz respectively, Svz can be expressed as

s~2 = G2/G1

The concept of generalised sequential speedup described above can also be utilised to
obtain a comparative performance evaluation of a processor for an application under various
processing conditions.

4.2 Parallel processing

Due to substantial variation in computing capabilities of the PEs, the traditional parallel
performance metrics of homogeneous architectures are not suitable for heterogeneous
architectures in their current form. Note, for example, that speed and efficiency provide
measures of performance of parallel computation relative sequential computation on a single
processor node. In this manner, the processing node is used as reference node. In a
heterogeneous architecture, such a ~ference node, ~pmsenting the characteristics of all the
PEs, is not readily apparent. In this investigation such a reference node is identified by
proposing the concept of virtual processor. Moreover, it is argued that a homogeneous
architecture can be considered as a sub-class of heterogeneous architectures. In this manner,
the performance metrics developed for heterogeneous architectures should be general enough
to be applicable to both classes of architectures.

Consider a heterogeneous parallel architecture of N processors. To allow define
speedup and efficiency of the architecture, assume a virtual processor is constructed that
would achieve a performance in terms of average speed equivalent to the average
performance of the N processors. Let the performance characteristics of processor
i(i=l,..., N) over task increments of AW be given by

where AZ and ~ represent the corresponding execution time increment and average speed

of the processor. Thus, the speed Vv and average execution time increment ATVof the

virtual processor executing the task increment AW are given as



llms, the freed-load increment parallel speedup S, and generalised parallel speedup S~ of

the parallel architecture, over a task increment of AW, can be defined as

Sf = A~jATP , S,= VPIK

where ATP and VPare the execution time increment and average speed of the parallel

sYstem. III this manner, the (fixed-load) efficiency E, and generalised efficiency of the

parallel architecture can be defined as

Note in the

Ef = (sf/N)xloo% ,

above that the concepts of
heterogeneous architectures are consistent

E, = (Sg/N)x 100%

parallel speedup and efficiency defined for
with the corresponding deftitions for

homogeneous architectures. Thus, these can be referred to as the general deftitions of
speedup and efficiency of parallel architectures.

5. TASK TO PROCESSOR ALLOCATION IN PARALLEL ARCHITECTURES

The concept of generalised sequential speedup can be utilised as a guide to allocation of tasks
to processors in paraUel architectures so as to achieve maximum efficiency and maximum
(parallel) speedup. Let the generalised sequential speedup of processor i (in a parallel
architecture) to the virtual processor be Si/v;

s.I/v
=lf/1( ; i=l,..., N (lo)

Using the processor characterisations of equations (8) and (9) for processor i and the virtual
processor, equation (10) can alternatively be expressed in terms of freed-load execution time
increments as

s. =A~/A~ ; i=l,..., N
I/v

Thus, to allow 100% utilisation of the processors in the architecture the task increments A~

allocated to processors should be so that the execution time increment of the parallel
architecture in implementing the task increment AW is given by

or, using equation (10),

~W ~AW=S, AW—— — ; i=l,..., N
‘=~ N

I/v
N

(11)

(12)

It follows from equation (11) that, with the distribution of load among the processors
according to equation (12) the parallel architecture is characterised by



AW = @Vv~Tp = VPA~

having an average speed of

Thus, with the distribution of load among the processors according to equation (12), the
speedup and efficiency achieved with N processors are N and 100% respectively. These are
the ideal speedup and efficiency. In practice, however, due to communication overheads and
run-time conditions the speedup and efficiency of the parallel architecture will be less than
these values.

Note in the above that, in developing the performance metrics for a heterogeneous
parallel architecture of N processors, the architecture is conceptually transformed into an
equivalent homogeneous architecture incorporating N identical virtual processors. This is
achieved by the task allocation among the processors according to their computing
capabilities to achieve maximum efficiency. For a homogeneous parallel architecture the
virtual processor is equivalent to a single PE in the architecture.

6. IMPLEMENTATIONS AND RESULTS

In this section, in addition to evaluation of performance of the architectures in implementing
the algorithms, hardware and software related influential factors such as inter-processor
communication, compiler efficiency and code optimisation are also looked at

6.1 Inter-processor communication and overhead

To investigate the performance of the inter-processor communication links, a 4000-point
floating-type data was used. The communication time in sending the data from one processor
to another and receiving it back was measured with the various communication links involved
in the parallel architectures. These are (i) T8-T8: serial communication, (ii) C40-C40: parallel
communication, (iii) T8-C40: serial to parallel communication and (iv) T8-i860: shared
memory communication. In cases of the C40 to T8 and the C40 to C40 communications, the
speed of single lines of communication was also measured by using hi-directional data
transmission. The inter-processor communication times (in SW) achieved were 0.0018 with
C40-C40 (double-line), 0.018 with T8-T8 (double-line), 0.0268 with T8-i860 (double-line),
0.0316 with T8-C40 (double-line), 0.1691 with C40-C40 (single-line) and 0.208 with T8-
C40 (single-line). Thus, among these the C40-C40 double-line parallel communication was
the fastest, whereas the T8-C40 single-line serial-to-parallel communication was the slowest.
It is noticed that as compared to serial communication, parallel communication offers a
substantial advantage. In shared-memory communication, additional time is requhed in
accessing and/or writing into the shared memory. In serial-to-parallel communication, on the
other hand, an additional penalty is paid during the transformation of data from serial to
parallel and vice versa.

To investigate performance with communication overhead, the beam simulation
algorithm was chosen. An aluminiurn type cantilever beam of length L = 0.635 m, mass
m = 0.037 kg and u = 1.351 was considered. The beam was disc~tised into 19 segments

and a sample period of At= 0.3 msec was used. In this investigation, the total execution
times achieved by the architectures, in implementing the algorithm over 20000 iterations was



considered. The algorithm, thus, consists of computation of deflection of nineteen equal-
length segments. The computation for each segment requires information from two previous
and two forward segments. The algorithm was implemented on networks of up to nine T8s.
Figure 1 shows the real-time performance (i.e. computation with communication overhead)
and the actual computation time with one to nine PEs. The difference between the real-time
performance and the actual computation time is the communication overhead. It is noted
that, due to communication overheads, the computing performance does not increase linearly
with increasing number of PEs. The performance remains nearly at a similar level with a
network having more than six PEs. Note that the increase in communication overhead at the
beginning, with less than 3 PEs, is more pronounced and remains nearly at the same level
with more than five PEs. This is due to the communication overheads among the PEs which
occur in parallel. Such a trend will also be observed in the corresponding speedup and
efficiency for the network.
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Figure 1: Execution time of the simulation algorithm on the transputer network.

6.2 Efficiency of compilers

To evaluate the efficiency of compilers the 3L Parallel C version 2.1, INMOS ANSI C and
Occam were used. The flexible beam simulation algorithm was coded into the three
programming languages and run on a T8. The execution times (in see) achieved were 3.4763,
3.6801 and 5.36 with Parallel C, ANSI C and Occam respectively. It is noted that the
performances with Parallel C and ANSI C are nearly at a similar level and at about 1.5 times
faster than the Occam. To further investigate this, the simulation algorithm was implemented
on networks of one to nine T8s using ANSI C and Occam. The execution times
corresponding to this investigation are shown in Figure 2. This further demonstrates that
Occam produces slower executable code, for this particular numerical computation, in a PP
environmen~ as compared to ANSI C. This is due to the involvement of integerAloating
point operations and run-time memory management of the transputer for which the C
compiler is more efilcient than Occam. Further investigations confkmed that better
performance is achieved, throughout, with the ANSI C compiler than the Occam, except, in a
situation, where, the computation involved is floating type data processing with declaring
array.



6.3 Code optimisation

Almost always code optimisation facilities of compilers enhance the real-time performance of
a processor. The i860 and the C40 have many optimisation features. The TMS320 floating-
point DSP optimizing C compiler is the TMS320 version of the 3L Parallel C compiler
(Texas Instruments, 1991b). It has many options, constituting three levels of optimisation,
which aid the successful optimisation of C source code fdes on the C40. The Portland Group
(PG) C compiler is an optimizing compiler for the i860 (Portland Group Inc., 1991). It
incorporates four levels of optimisation.
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Figure 2: Performance of ANSI C and Occam in implementing the simulation algorithm.

To measure the performance attainable from the compiler optimisers, so as to fully utilise
the available features, experiments were conducted to compile and run the LMS and the
beam simulation algorithms on the i860 and the C40. To study the effect of the PG
optimizing compiler, the LMS algorithm was compiled with the number of weights set at 5
and q = 0.04. The algorithm was implemented on the i860 with four levels of optimisation

and the execution time of the processor in implementing the algorithm over 1000 iterations
was recorded. Similarly, the beam simulation algorithm was compiled and implemented on
the i860 with 5 beam segments and At = 0.055 ms. The execution time of the processor in
implementing the algorithm over 20000 iterations was recorded with each of the four levels
of optimisation. Table 1 shows the execution times and the corresponding speedups achieved
in implementing the algorithms, where level Ocorresponds to no optimisation. It is noted that
the performance of the processor in implementing the LMS algorithm has enhanced
signiilca.ntly with higher levels of optimisation. The enhancement in case of the beam
simulation algorithm, on the other hand, is not signillcant beyond the frost level. The disparity
in the speedups in case of the two algorithms is thought to be due to the type of operations
performed by the optimiser.

To study the effect of the optimisers further on the performance of the system,
optimisation level O (no optimisation) and level 2 were used with the 3L optimiser in



implementing the algorithms on the C40. Similarly, with the i860, using the PG compiler,
optimisation level O and level 4 were utilised. The LMS and the beam simulation algorithms
were coded for various task sizes, by changing the number of weights in case of the LMS
algorithm and number of segments in case of the beam simulation algorithm. The algorithms
were thus implemented on the i860 and the C40. The enhancement in performance of the
processors fi implementing the LMS algorithm with optimisation was noted to be
substantially greater than in implementing the beam simulation algorithm. This, as discussed
above, is due to the structure of the algorithms where for the LMS algorithm the features of
the optimisation are well exploited and not much for the beam simulation algorithm. It was
further noticed with the corresponding speedups achieved with optimisation in implementing
the algorithms on the i860 and the C40, that the enhancement occurs within a specific
bandwidth of the task size (number of filter weights). However, due to its better data
handling capability, the upper roll-off point for the i860 occurs at a larger task size in
comparison to that with the C40 implementation.

Table 1: Execution times and speedup of the i860 with various optimisation levels.

Optimisation level LMS algorithm Simulation algorithm

Execution time Speedup Execution time Speedup
(see) (see) “

Level O I 0.43 11 I 0.113035 I 1

Level 1 0.242 1.7769 0.077534 1.4579

Level 2 0.127 3.3858 0.073536 1.5371

Level 3 0.087 4.9425 0.073535 1.5372

Level 4 ! 0.082 ! 5.2439 I 0.073533 I 1.5372

6.4 Algorithms and architectures

To provide a comparative performance evaluation of the architectures, several algorithms,
namely a 512-point FFI’, cross-correlation with two waveforms each of 1000 samples, the
RLS fflter with a second-order IIR structure over 1000 iterations, the LMS filter with an FIR
structure and L = 0.04 over 1000 iterations, the beam simulation and control each over

20000 iterations and the beam identiilcation with second-order models over 1000 iterations
were considered. Table 2 shows the execution times thus achieved with the architectures in
implementing the algorithms. The algorithms have been listed according to their degree of
regularity; the FIT at the top is of a highly regular nature, whereas the LMS fflter algorithm
at the bottom is of a highly irregular nature. It is noted that, among the uni-processor
architectures, the i860 performs as the fastest in implementing regular and matrix-based
algorithms. In contrast, the C40 performs the fastest of the uni-processors in implementing
algorithms of irregular nature. In a similar manner, the performance of the T8 is enhanced by
an increasing degree of irregularity in an algorithm.

It is noted in Table 2 that among the parallel architectures the suitability of the i860 for
~gular and matrix-based algorithms is well reflected in the shortest execution times achieved
with the i860+T8 in implementing the FFT, beam simulation, beam control and correlation
algorithms. In contrast, the suitability of the C40 is dlected in achieving the shortest



execution times with C40+C40 in implementing the beam identification, RLS filter and LMS
falter algorithms. However, due to an unbalanced load distribution among the processors,
especially in case of the i860+T8 and C40+T8, the enhancement in the performance of the
architecture in relation to the corresponding uni-processors is not signitlcant.

For the performance with heterogeneous architectures to be significant, the concept of
virtual processor was utilised with the corresponding task allocation strategy. In this process
the beam simulation and the DOT algorithms were used with the C40+T8 architecture. The
former was implemented over 20000 iterations for each task size and for the latter was
realised with b = 4.0, c = 6.5 and a as an integer. Figure 3 shows the execution times of the
architectures in implementing the algorithms. In these diagrams the characteristics of the
virtual processor are also shown. The actual execution times achieved with the C40+T8 in
implementing the DOT algorithm are similar to those of the corresponding theoretical (10WZO
efi-lcient) model. In case of the beam simulation algorithm, however, the actual execution
time of the architecture is more than that of the corresponding theoretical model. This is due
to communication overheads in implementing this algorithm. However, these results
demonstrate that the utilisation of the concept of virtual processor in allocating tasks among
the processors in a heterogeneous architectures results in maximum efficiency and hence
enhances the real%me performance of the architecture substantially.

I Table 2: Execution tirn

I AIgorithm I i860

B
0.05

Simulation 0.38

Control 0.41

Correlation 0.66

I Identification I 0.35

s (see) of the architectures in implementim

2.68 I 3.695 I 1.04 I 1.92

1.839 I 3.824 I 0.43 I 0.769

the algorithms. I

*

C40+T8 T8+T8

2.1383 3.748

1.7669 3.008

1.963 I 3.009 I

*

1.332 3.0605

0.6114 0.6066

0.1953 0.3167

0.0456 I 0.085 I

7. CONCLUSION

An investigation into the development of high-performance computing methods within the
framework of real-time applications has been presented. Influential factors such as inter-
processor communication, compiler efficiency and code optimisation affecting the
performance of a computing plat form have been investigated. A comparative performance
evaluation of several unit-processor and multi-processor architectures with contrasting
features in implementing signal processing and control algorithms has been carried out. It has
been demonstrated that due to the heterogeneous nature of an application algorithm a close
match needs to be made between the computing requirements of the algorithm and the
computing capabilities of the architecture.

A quantitative measure of performance for sequential and parallel computing has been
introduced and utilised in a comparative performance evaluation of processors in the
implementation of real-time application algorithms. It has been shown that the performance
of a processor evolves approximately linearly with task size. The has led to the introduction



of several performance metrics, namely the average speed, average gradient, generalised
speedup and efficiency, for a more comprehensive performance evaluation of an architecture
in sequential and parallel signal processing and control applications. These have been shown
to provide suitable measures of the performance of a processor over a wide range of loading
conditions and thus nXlect on the real-time computing capabilities of the architectures in a
comprehensive manner. The performance metrics developed and verifkd, for parallel
computing, apply to both homogeneous and heterogeneous architectures and are consistent
with those of traditional architectures. In this manner, these enable suitable task to processor
mapping in a parallel architecture so as to achieve for maximum speedup and efficiency.
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Figure 3: Execution times of the architectures in implementing the algorithms.
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