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ABSTRACT

The decay rates of the different partials of a vibrating bell are an important characteristic of the
bell’s sound spectrum. These decay rates are caused by material damping of the bell structure
and acoustic damping due to the surrounding air. Designing new bells, bell founders would like
to know the damping of the different partials before they cast a bell since casting a new bell
is expensive and time consuming. However, the damping can only be determined accurately
experimentally after a bell is cast. Numerical methods (FEM/BEM) can give an estimation of
the damping values.

To gain a better understanding of the damping behavior of bells, modal measurements were
carried out on four different bells to obtain the eigenfrequencies and the material and acoustic
damping values of the partials. The results were compared with the results from fast numerical
analyses methods utilizing axisymmetric Fourier elements in circumferential direction for both
the structural and acoustic analyses. Some characteristic features of the damping values of bells
are obtained and the comparison of experimental and numerical results shows that the damping
values for most of the seven lowest partials can be predicted fast within 30% of the measured
values.

INTRODUCTION

Bells have been cast by bell founders in Northern Europe since the Middle Ages. In those days
casting a pleasant sounding bell or even a pure ringing bell was merely a question of luck.
The global shape of the traditional minor third bell resulted from experiments over many years.
With today’s computer power and design tools, bell founders are able to design bells meeting
specific requirements of the sound spectrum without the need to first cast bells, reducing time
and costs.



Least than a decade ago, a new type of carillon bell was developed using structural opti-

mization techniques (Roozen-Kroon [1]). The optimization problem formulation involved the
definition of objective and constraint functions for which characteristics of the sound spectrum
were taken. One important aspect of the sound spectrum is the decay rate of each partial which
determines the time the partial can be heard. This decay rate is caused by damping phenomena
always present in vibrating structures. For a vibrating bell, both material and acoustic damping

exist. In the optimization problem, the damping values were specified to match certain target
values in order to achieve a distinct sound spectrum.

Van Heuven [2] presented a thorough study on the measurements of acoustical properties
of bells. He found that acoustical damping is sensitive to small changes in the bell shape and
that there is no simple relation between frequency or shape and the damping of bells.

For abetter understanding of the damping behavior of bells, both, experimental and numeri-
cal investigations were carried out on four differently shaped and sized bells. Goal of this study
is to see if it is possible to predict the damping values of the different partials accurately with
numerical methods.

First, some characteristics of a vibrating bell are presented and the phenomenon of damping
is described. Next, the measurement procedure and numerical approach to obtain the modal
properties are outlined. Finally the numerical and experimental results are compared and dis-

cussed and some conclusions are drawn.

DAMPING OF BELLS

After a bell is excited with a stroke of a clapper or hammer, the bell starts to vibrate. Assuming
the bell to behave in a linear elastic way, the vibration consists of the superposition of an infi-

nite number of excited eigenmodes with distinct eigenfrequencies. Every eigenmode vibrates
with its own eigenfrequency in a unique mode shape and decays at its own decay rate due to
damping. The eigenfrequency, mode shape, damping and amplitude of an eigenmode are called
the modal properties. Every eigenmode is characterized by its typical vibrational pattern in the
vertical and horizontal cross-section (figure 1). The vibrational patterns of the eigenmodes in
the vertical cross-section are denoted by reman numbers H, F, etc. and the patterns in hori-
zontal direction by numbers 2, 3, .... etc.. These numbers describe the number of periods in

circumferential direction.
Each eigenmode excites the air surrounding the bell and generates a vibration in the air

with the same frequency. A sound field is generated in which every pure tone or partial can
be heard. Although all partials contribute to the sound spectrum, not all partials are equally

important. To be important, the partials have to be loud and of low order since higher tones
decay faster. A mode with a lower frequency has a greater initial vibrational amplitude, hence
low frequencies appear louder in the sound spectrum. The frequency ratios of the partials form
the overtone structure.

Any vibrating structure possesses some kind of damping. The damping of every eigenmode
of a bell can be divided into material (qn) and acoustic (q.) damping. In each cycle of the
periodic deformations, part of the elastic deformation energy is dissipated and passed into heat
due to internal friction. This type of damping is also called internal damping. Generally it is
assumed that material damping depends only on the material of which the bell is cast and is
independent of the modal properties of the structure. So, the material damping is usually taken
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Figure 1: Vibration patterns of a bell.
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to be a constant value.
Due to the sound radiated into the surrounding air, energy is transmitted from the vibrating

bell to the air. This radiation of sound energy reduces the vibrational energy of the eigenmode
and depends besides the shape of the bell, upon the modal properties.

Since the bell is assumed to behave linearly elastic and weakly damped, the damping mech-
anisms of two different eigenmodes are unrelated. Hence, the damping of one eigenmode is
undisturbed by the excitation of other eigenmodes. Therefore the damping of the bell can be
modelled as modal damping and every eigenmode possesses its own damping value. The total
damping is equal to the sum of the material damping and acoustic damping and is represented
dimensionless as a fraction of the critical damping of the eigenmode. The decay rate of a par-
tial is assumed to be equal to the decay rate of the vibrational amplitude of the eigenmode, i.e.
halving the amplitude of an eigenmode leads to half the pressure amplitude of the pure tone in
air. In addition, the partial frequencies are assumed to remain the same during the slow decay.
Other types of damping, like damping of the suspension of the crown, are not considered since
they are assumed to be negligible for the vibration modes looked at here.

MEASUREMENT OF MODAL PROPERTIES

A modal analysis was performed to detect the eigenfrequencies and eigenmodes of the bells.
If a bell is excited by a clapper, all frequencies are present in the sound spectrum. Using
accelerometers as measurement devices, an eigenfrequency appears as a peak in the measured
signal. Using measurement points on the bell wall at a fixed distance in the horizontal and
vertical planes, the eigenmode belonging to the eigenfrequency can be detected. The bell was

fixed at the crown but isolated with rubbers from the surrounding.
Next, for each eigenfrequency the damping of the vibration was measured. The bell was



excited in one eigenfrequency with an electro-magnetic shaker coupled to a pure tone generator
so the bell would vibrate with this eigenfrequency. Additional measurements showed that the
bell indeed vibrated only with this frequency and the effect of other eigenfrequencies, although
present in the sound spectrum, were negligible with peaks in the sound power spectrum more
than 40dB less than the excitation frequency. The excitation was stopped at time t = tO by
removing the shaker and the decay of the initial amplitude A. of the vibration mode was mea-
sured. In a linearl y elastic structure the free vibrational amplitude y(t) of an eigenmode decays
exponentially:

y(t) = Aoe-6w(t-tO)sin(u(t – to)+ @) (1)

The power of the exponential function determines the decay rate and contains the product of
modal damping c and the angular frequency u. In order to determine the product ~w, the accel-
eration of an eigenmode is measured during a short period of time, in which the acceleration
amplitude decays substantially. Plotting the natural logarithm of the absolute acceleration ver-
sus time the slope represents –cw which yields the modal damping value of the vibrational
amplitude.

In order to obt,ain the values of the material and acoustic damping, one set of measurements
was carried out in free air for the total damping. The other set was done in a vacuum compart-
ment able to hold bells of diameters up to 1 meter, yielding the material damping. The acoustic
damping results from the subtraction of total and material damping. Both material and acoustic
damping values are of the same order of magnitude (typically 10-4, a dimensionless quantity).

NUMERICAL ANALYSIS OF MODAL PROPERTIES

Since there is no simple analytical relation between the shape of the bell and the frequency
and damping values, numerical analysis tools must be used to derive these quantities. As-
suming bells to be axisymmetric, as they usually are, a substantial reduction in CPU time can
be achieved. In circumferential direction the non-axisymmetric boundary conditions are ex-
pressed as Fourier series, reducing the dimensionality of the problem from three to two. The
structural-acoustic problem is treated as an uncoupled one.

The mesh used for the numerical analyses is derived from geometry measurements of the
different bells. The effect of ornaments present on the bell surface was not accounted for in
the mesh. Previous investigations (Roozen-Kroon [1]) showed an axisymmetric mesh with 20
quadratic (8-node) elements to give sufficient accurate results for the structural analyses. For
the acoustic analyses quadratic (3-node) line boundary elements were used for mesh compati-

bility.
For the structural vibration analysis, the axisymmetric finite element method (FEM) code

solves the eigenvalue problem. The analysis results in the eigenfrequency u (in radians), mode

shape with normalized velocity u and kinetic energy l?~ of a partial:

Ek = ~pn 1A u2rdrdz (2)

where p is the specific mass of the bell material and A is the bell surface in rz-plane where the

bell is modelled in. The kinetic energy is related to the maximum amplitude of the vibration
mode and hence is not a time-average value.



Using the results of the structural vibration analysis one is able to calculate with the ax-
isymmetric boundary element method (BEM) code (Kuijpers et al. [3]) the radiated sound

power P. of the vibrating bell:

‘0= ~~ ‘e(P*v.)ds (3)

where p* is the complex conjugate of the sound pressure and vn is the normal velocity on the

bell surface S. The normal velocity is related to the mode shape velocity as v. = u “n where
n is the outward unit normal of the bell surface. The value of P. is a time average value.

Computation times are typically 10 seconds for a FEM-axisymmetric analysis of selected
partials and 20 seconds for a BEM-axisymmetric analysis of one partial. The results of the
acoustic analyses were checked with SYSNOISE [4]. For an accurate 3D BEM analysis of the
lowest eigenfrequency a quarter bell with at least 20 elements in circumferential direction was
needed to get accurate results but lead to computation times of 25 minutes for one partial.

Considering the bell as a simple one degree of freedom mass-spring system, the acoustic
damping q. is defined as the loss of vibrational energy due to sound radiation into the air
surrounding the bell (Lesueur [5]):

P
~a== (4)

wEk

and is independent of the amplitude of the vibration. Also for similar shaped but differently
sized bells, the acoustic damping value is the same (van Heuven [2]).

In literature often confusion arises on how to define the expression for the damping. Here
the acoustic and material damping are defined as loss of vibrational energy and is twice the
modal damping of the vibrational amplitude: qa = 2e. A value of e = 1 means critical
damping.

DISCUSSION OF RESULTS

The modal properties of four differently shaped and sized bells were measured and numerically
anal yzed: a minor-third bell (hereafter called bell A), a frequency optimized major-third bell
(B), a damping optimized major-third bell (C) and a prototype major-third bell (D). These bells
were cast at the Royal Eij shouts bell foundry in The Netherlands and the measurements were
carried out at the laboratory of the Department of Mechanical Engineering.

The frequency of the hum for each of the bells A to D is resp. 261,220,440 and417 Hertz

and the radius of the lip of each bell, i.e. the largest radius, is resp. 38.8, 44.9, 22.4 and 27.4
cm. For a qualitatively good bell the product of frequency and diameter is important and is
approximately 200 m/s for the four bells.

Inherent to every practical experiment are measurement errors. For some modes the inten-
sity was not high enough for detection due to the higher background noise of the measurement
equipment. Also, results for frequencies above 3000 Hz are less accurate due to the filter
frequencies of the measurement equipment in this area. Above these frequencies a drastic

reduction of intensity of the response occurred.
In table 1 the experimentally measured eigenfrequencies of the most important modes are

summarized along with the numerically calculated values. For a (idealized) minor-third bell
the eigenmodes, name and frequency ratios of the lowest and loudest partials are also given.
Note that a major-third bell has a frequency ratio 2.5 instead of 2.4.



mode

H-2
F-2
I-3
II-3
I-4
I-5
I-6

name

hum
fundamental
third
fifth
nominal
twelfth
double octave

freq.
ratio

1
2

2.4
3
4
6
8

bell A -
E

261
521

623
783

1040
1556
2140

N

258
520
621
770

1032
1543
2126

bell B bell C
E

220
440
554
652
881
274
735T

NE

220 440
440 876

552 1100
654 1318
876 1764

1277 2574
1748 3508

N

440
880

1107
1320
1765
2577
3537

bell D
E

417
835

1052
1248
1664
2414
3264

N

416

834
1039
1244
1655
2416
3289

Table 1: Most important eigenfrequencies in Hz (E = experimental, N = numerical).

Numerical results are in accordance with the measured frequencies and the maximum devi-
ation for the modes shown is less than 270, indicating the finite element model to be sufficiently
accurate. For eigenfrequency ratios higher than 8 the deviation between measurement and an-

alyzed frequency increases. The frequency ratios for the twelfth and double octave are not
exactly matched. In general it appears to be difficult to satisfy the exact ratios for these two
modes and therefor bell founders usually tune a bell to match only the five lowest important
frequencies accurately and this deviation is accepted.

Figure 2 shows the measured material and acoustic damping values for bell B. To reduce
errors in the damping values three measurements were done for each frequency and the average
value was taken. The standard deviation of the damping values ranged from 1910for a good
measurement up to 6% for a less accurate measurement. Also keep in mind that the acoustic
damping values result from two measurements.

As expected the material damping can be assumed to be independent of the eigenfrequency.
Deviations may be caused by measurement errors, non-homogeneous material or material dis-
locations, causing the bell to consume more or less energy for specific eigenfrequencies. At
least no dependence on frequency or mode shape is detected.
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Figure 2: Measured damping values for bell B.

For bell A the mean material damping is q~ = 1.4 * 10-4 with a standard deviation o =

0.2 * 10-4, for bell B: q~ = 1.3 * 10-4 (a = 0.1 * 10-4), for bell C: q~ = 2.6 * 10-4



(o = 1.0* 10-4) and for bell D:, qn = 1.6* 10-4 (a = 0.2* 10-4). Differences between bells
exist since they were cast with some months in between so probably the composition of the
alloy was different.

For the acoustic damping no direct relation between frequency and damping value is ob-

served. Frequencies between about 600 Hz and 1500 Hz have a high acoustic damping and
therefor will disappear quickly from the sound spectrum. For bell B, the material damping is in
general higher for low frequencies (approx. 600 Hz), for mid-frequencies (approx. 600-2500
Hz) the acoustic damping is generally higher and for high frequencies (above approx. 2500
Hz), the acoustic and material damping are of the same order of magnitude. This behavior is
in analogy with general structural elements (Lesueur [5]) and is observed for all four bells.

In figure 3 the measured (o) and calculated (*) acoustic damping values as function of the
frequency ratio for the seven most important modes for each bell are displayed. Note that the
points are connected with lines only for a clearer picture and for frequency ratios other than the
ones displayed the damping values can not be obtained from these figures.
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Figure 3: Measured (o) and calculated (*) acoustic damping values.

For all four bells the hum has the lowest acoustic damping and can be heard longest in the
sound spectrum. Calculated and measured acoustic damping values show a good agreement for
the low and high frequencies considered here. In general the calculated damping value is about
20% higher for low frequency ratios. For the nominal mode the damping value is predicted
too low for all bells and the fifth mode for bells B and D. Differences up to 60% for bell A are



observed, 30% for bells B and C and more than 100% for bell D. In all these cases the acoustic
damping values are higher than about 4 * 10-4 and may indicate that either measurements
for high damping values are less accurate or the numerical analyses are less accurate. The
large differences can not be explained from the measurements of total and material damping
separately. An additional source of damping, like damping of the crown is unlikely since the
mode shape has a node at the crown. The existence of additional modes causing extra damping
is also unlikely since it was checked whether only one eigenfrequency was present.

From earlier investigations it is known that acoustic damping is sensitive to small changes

in the shape of the bell. Comparing the calculated values of the four bells with each other shows
a close resemblance between the behavior, which may indicate that the numerical model can
not completely cope with small local changes in shape. The ornaments not taken into account
in the mesh may have some influence here. Future investigations have to focus on this topic.

CONCLUSIONS

The modal propetiies of four bells of different shape and size were compared, both experimen-
tally and numerically. Goal was to predict the frequency and especially the acoustic damping
values of the different partials of a vibrating bell with numerical analysis tools. This can pro-
vide the bell founder with some insight in the damping of a bell before he starts casting a new

bell, hence reducing time and costs of traditional bell founding.
It is found that bells of approximately same size show a different acoustic damping for the

most important partials, indicating that the shape of the bell is essential for the value of the
acoustic damping. Hence, if analysing the acoustic damping of a vibrating bell, not only the
modal properties and size of the bell are important but also the exact shape.

Despite the accurate prediction of frequency values which are within 2% of the measured
values, larger differences are found for the acoustic damping values. The damping values
can be predicted within some accuracy and a difference of 20 to 30$Z0between calculated and
measured values has to be accepted. Speaking in terms of time a partial can be heard one must
think in a variation of seconds or less and can only be distinguished by a skilled listener. The
numerical analysis methods provide a fast tool for the bell designer to quickly investigate the
acoustic damping of new bell shapes.
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