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In this paper, a general model of the signal from faulty rolling element bearings under

the condition of a heavy load is given. The envelope-autocorrelation of this proposed

model in the case of very low shaft speed is given with a mathematical description. The
simulated signals of rolling element bearings under the condition of a heavy load with
inner race fault, outer race fault, and roller fault are generated using the model. In the
power spectrum of signals, the characteristic frequency and its harmonics are submerged

in the white noise, but they are obvious in the envelope-autocorrelation and envelope-

autocorrelation power spectrum. It is demonstrated that the envelope-autocorrelation

and its power spectrum are effective as to a fault detection technique.

1 Introduction

The condition monitoring of rotating machinery is important in terms of system

maintenance and process automation, especially for the condition monitoring of rolling
element bearings which are the most common wearing components in industral rotating
machinery. They span across industries from agriculture to aerospace, in equipment as

diverse as descaler pinch rolls to the Space Shuttle main engine turbopumps. For this

reason a variety of bearing fault detection techniques have been proposed. But, as far as
we know, only a very few articles have reported the theoretical modeling of bearing faults
with mathematical descriptions.

Braun [1,2] has given a theoretical model of the rolling element bearing with multipoint
bearing defects. In his model, the repetitious impulse responses induced by bearing defects
and the modulation by the bearing structural vibration were introduced.

tThis work Wascarried out while the author was at CRASys, Dept. of Systems Engineering, ANU,

Canberra, ACT 0200, Australia. The authors wish to acknowledge the funding of the activities of the
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McFadden and Smith [3] have improved the model by taking into account the impulse
series, the modulation of the periodic signal caused by non-uniform load distribution and

of the vibration transmission of rolling element bearing, as well as the exponential decay
of vibration.

Wang and Harrap [6] have improved the model further by considering the impulse
series, the modulation of the periodic signal from non-uniform load distribution and of

the first bearing vibration mode with mathematical descriptions. They do some envelope-
autocorrelation analyses for the simulated signals and experimental data. The envelope
autocorrelation technique is a viable alternative to the envelope spectral technique was
given in [6].

Both [3] and [6] consider the modulation of cage frequency caused by non-uniform load

distribution. Actually, the periodical signal of non-uniform load distribution imposes a

modulation on the basic impulse series only under a heavy load [10]. Its period is different,
depending on where the fault occurs [4, 5].

In this paper, a general model of fault from rolling element bearing under a heavy load

is given. The basic impulse series induced by bearing faults, modulation of a periodic sig-

nal due to non-uniform load distribution and of bearing induced vibration, the machinery
induced vibration, and a Gaussian white noise sequence are considered in the model. The
period Tj of vibrational signal due to the non-uniform loading depends on where the
fault occurs. Its envelope-autocorrelation is given with mathematical description. Then
the simulated signals of inner race, outer race, and roller faults are generated. Their

power spectrum, envelope-autocorrelation, and envelope-autocorrelation power spectrum
are analysed.

2 A Model for Rolling Element Bearing Faults

Suppose z(t) is an original signal from a rolling element bearing with a single point

fault, it can be expressed as (see[lO])

where

z~~(-t) the bearing induced vibration,

z~ (t) the modulation effect of non-uniform load distribution of the bearings,

xi(t) the basic impulse series produced by the fault which impacts repetitiously with
another surface in the bearing,

z~(t) the machinery induced vibration and

2. In the presence of bearing fault,n(t) a Gaussian white noise sequence with variance on

n(t) is very small compared with the signal Xb~(~)x~(t)$j(t).

Impulses Due to Fault: The component due to the bearing fault is

(2a)
?n=l 1=1



Causes of Periodicities Outer Race Inner race Rolling Element
Faults Faults Faults

Stationary loading No effect f, f.

Table 1: Periodic characteristics of bearings with faults under non-uniform load
distribution [4, 5]. Here ~, is the shaft rotational frequency, and f.is cage
frequency.

where A. = dofjis the amplitude, ~} is the initial phase of l-th harmonic, Nj is the
number of harmonics induced by impulse series. The characteristic frequency of bearing
fault is fj= I/Tj. This can be the characteristic frequencies of inner race fault( fbpjz),of

outer race fault (fbpj.),and of rolling element fault (fbsj),depending on where the fault
occurs.

Non-uniform Loading: The component of the vibration signal due to non-uniform

loading is

(2b)
k=l

which is a periodic function with the period of !i!’g(~~ = I/Z’g). The amplitude and initial

phase of k-th harmonic are A$ and q$ respectively and Ng is the number of harmonics.

The periodicity f,depends on the elements of bearing fault as shown in Table 1 [4, 5].
Bearing Induced Vibration: The vibration induced by the bearing is

where f~~, A;,, &, and a~. are the resonance frequency, amplitude, initial phase, and
damping factor of j-th vibrational mode of the bearing respectively, Nb. is the modal
order of bearing vibration signal.

Machinery Induced Vibration: The vibration due to machinery other than the bearing
in question is

(2d)
n=l

where f~n,A:, ~~, and a: are the resonance frequency, amplitude, initial phase, and
damping factor of n-th vibrational mode of the machinery system respectively, N. is
the modal order of machinery vibration signal. Theoretically, N~, Nj, Nb,, and N. are

infinite. The band limited nature of most measurements means that it is reasonable to

assume finite values for these orders in practice.
Envelop e-Autocorrelation: The envelope of a real-valued signal x(t) is \-z(t)1, where

and z(t) is the analytic signal [7] associated with x(t), i is the complex operator, iii(t) is
the Hilbert transform [8] of z(t). If \z(t) I can be considered ergodic, then the envelope-

autocorrelation can be estimated as

(4)



where 7’ is some finite

@z. (~) which is related

time interval. For estimating convenience, here another function
to l?zz(~) is introduced:

(5)

It is assumed that damping and initial phase may be neglected in the derivation of the
envelope-aut ocorrelat ion. Therefore, the function Q.. (~) for the bearing in the very low

shaft speed case can be expressed as (see [10])

1 Nb.,Nq,Nf

+ cos[27r(21fj + 2kfq)7] + cos[zr(z~fj – z~fq)~]} (6)

k,kl=1 1,11=1 m~=o

where

and

HO,l,...,T(T) = COS{27T[(2+ Zl)ff + (~+ h).fg]~}>

A (AO)2(A{,)2(A$)2
Dl,k =

8
7

(7a)

(7b)

where C, Cl, Dj,k, Ek,kl are constants. In the rolling element bearings, usually it is

true for ~~ < jj. By comparing R.,(~) with @.z (I-), the main frequencies in the envelope-
autocorrelation function Rzz (~) are the fault characteristic frequency ~j and its harmonics
/jj(/=2,3, c”., Nj). And k.f~ (k = 1,2,””. , N~) are the side frequencies of main fre-

quencies, but their amplitudes are smaller than those of ~n frequencies. There are alSO

some components of small amplitude with frequencies of ~ (J + J1).ff + ~ ( k + kl ).f~ ( here

(l+ll)is odd, /,11=1,2, ”,Nf; k,kl=l,2, ”” ,IVq, except 1 = /l (1 k = /cl) in RZZ(T).

3 Simulation of Rolling Element Bearing Faults

The simulated signals are generated according to a bearing housing which supports

two descaler pinch rolls. The mean rotational speed of rolls is 36.06 RPM (0.601 Hz), and
the shaft speed varies randomly in a small range about the mean. The fault characteristic

frequencies are listed in Table 2.



Fault type Outer race Inner race Roller fault

fault (.f~Pfi) fault (.fbp.fo) (.fb.j)
Characteristic

Frequencies (Hz) 6.500 4.936 2.127

Table 2: Characteristic Frequencies of Bearing Faults

3.1 Simulation of Inner Race Fault

For the inner race fault, the modal orders of vibrational signals from bearing itself,

machinery system, and impulse series are Nb, = 5, N, = 5, Nj = 7 respectively, with a

Gaussian white noise sequence (standard deviation a. = 4.0). The modal order of vibra-
tion signal from non-uniform load distribution is N~ = 2, the frequency of this vibration
signal is the shaft rotational frequency, ~, = 0.601 Hz. Fig. la is the simulated signal
of inner race fault with the samplmg frequency ~s~~P = 5000 Hz. Fig. lb, Fig. lc, and
Fig. ld are the power spectrum, envelope-autocorrelation, and envelope-autocorrelation

power spectrum respectively. The fault characteristic frequency and its harmonics are
completely submerged in the white noise in the power spectrum (shown in Fig. lb).

The main frequencies are the fundamental characteristic frequency of inner race fault

.f(Pji = 6.500Hz and its harmonics (k.f{,ji, k = 2,3,0 -”) from Fig. lC and Fig. Id. Some
side frequencies kf, (k = 1,2, . . .) are found in Fig. ld.

3.2 Simulation of Outer Race Fault

For the outer race fault, the periodicity of non-uniform load distribution does not

impose any modulation on the impulse series from the outer race fault of bearings (see
Table 1[4, 5]). The simulated signal (shown in Fig. 2a) consists of impulse series (Nj = 7),

bearing itself (Nb$ = 5), machinery system (N, = 5), and a Gaussian white noise sequence
(standard deviation is the same as it in Section 3.1). Fig. 2b, Fig. 2C and Fig. 2d are the

power spectrum, envelope-autocorrelation and envelope-autocorrelation power spectrum.
The fundamental characteristic frequency of outer race fault .f&jO = 4.9001fz and its
harmonics (kf~pjO, k = ~, 3, . ..) are notable in Fig. 2C and Fig. 2d. No side frequency
exists in Fig. 2d.

3.3 Simulation of Roller Fault

For the roller fault, the periodicity of non-uniform loading distribution is ~. =

0.260 (Hz). The modal orders and the standard deviation of the Gaussian white noise
sequence are the same as Section 3.1. The simulated signal is shown in Fig. 3a. And

Fig. 3b, Fig. 3C and Fig. 3d are the power spctrum, envelope-autocorrelation, envelope-
autocorrelation power spectrum of Fig. 3a. The main frequencies are the fundamental
characteristic frequency of roller fault &j = 2.100 Hz and its harmonics ( kf~, j, k =

2,3, c ..) from Fig. 3C and Fig. 3d. Side frequencies (kfc, k = 1, 2,...) do exist in Fig. 3d,

but they are difficult to find because of the small value of ~..



4 Conclusion

In this paper, a general model of bearing faults is given. The envelope-autocorrelation

is given with mathematical description. By simulating signals of different bearing faults

with

1.

2.

the given model, the following results are obtained:

The envelope-autocorrelation of simulated signals from the rolling element bearing
with different element faults in the very low shaft speed confirms its theoretical
envelope- autocorrelat ion.

The envelope-autocorrelation and envelope-autocorrelation power spectrum are ef-

fective as a fault detection technique for bearings in the low shaft speed bearing,
even under a heavy load.
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Simulated signal of bearing with inner race fault (j,.~P = 5000Hz): (a) - sim-
ulated signal generated by model, (b) – power spectrum of (a), (c) – envelope-

autocorrelation of (a), (d) – envelope- autocorrelation power spectrum of (a)
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Figure 2: Simulated signal of bearing with outer race fault (~,.~P = 5000Hz): (a) - sim-

ulated signal generated by model, (b) – power spectrum of (a), (c) – envelope-
autocorrelation of (a), (d) – envelope-autocorrelation power spectrum of (a)
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Figure 3: Simulated signal of bearing with roller fault(~,.~P = 500017z: (a) – simu-

lated signal generated by model, (b) - power spectrum of (a), (c) - envelope-
auto correlation of (a), (d) – envelope-autocorrelation power spectrum of (a)


