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ABSTRACT

Local and global energy flow in structures built up by domains with different rigidities is
studied. A combined FEA/SEA approach is advanced where stiffer domains (with low modal
density) are analyzed using finite element analysis (FEA) and weaker domains (with high
modal density) are analyzed using Statistical Energy Analysis (SEA). The approach proposed
employs an iterative optimization procedure where the difference between externally supplied
active power and the total power dissipated in the structure is minimized. Sectional forces in
points connecting the stiff and weak domains are used as design variables. Exact dynamic
substructuring is introduced, to reduce the number of degrees of freedom in the FE domain
during the optimization procedure. The potential to cover a large frequency interval is
demonstrated in a numerical example where the harmonic response of a truck is studied.

INTRODUCTION

Finite Element Analysis!? (FEA) is frequently and mostly successfully used to model stress
and low frequency vibration behavior in built up structures. Within the level of discretization,
the method can provide the exact pressure level, or vibration amplitude at any point in space
and time for any given dynamic input.

Although FEA has proven successful in these areas, it has been found to have severe
limitations for noise prediction when the contribution from higher eigenmodes becomes
important. For thin walled steel structures, FE calculated results will be poor at about
frequencies corresponding to the 10’th to 20’th eigenmode. The important acoustic frequency
range, however, often extends beyond the 100’th mode of vibration. To further extend the
frequency range, in which FEA is acceptably accurate, some form of model reduction may
be performed (Wilson and Josefson3). By using this approach, the number of nodes and
elements can be increased, and higher modes may be represented more accurately.

The Statistical Energy Analysis*> (SEA) technique has become increasingly interesting
and important as an alternative and a complement to FEA, sofar specially to the acrospace and
ship industry, for high frequency vibration and noise prediction. The successful application
of SEA in its standard form relies on high modal density, high modal overlap, and short
wave lengths. These are all factors that make FEA inaccurate at high frequencies. Up to
now, SEA and FEA have mostly been used separately.



Since FEA and SEA have their computational strengths in different frequency ranges, a
method of combining these two methods and taking advantage of each method’s strengths
would be useful. An advantage of a combination of FEA and SEA would be the possibility
to analyze a generic structure, which may consist of components or regions having different
rigidities. At one frequency, the modal densities of some components could be too high
for FEA to be practically applicable, whereas another component is to rigid to permit use
of SEA successfully. One may also note that coupling between a SEA component and an
acoustic cavity is fairly straight forward, which makes a fluid structure interaction calculation
easier. However, using the two methods together is not entirely straightforward due to the
differences in the two methods natures.

PROPOSED METHOD
The present work is aimed at combining the two methods of analysis, SEA and FEA. To
allow for large FEA models in the analysis, dynamic substructuring (Wilson and Josefson)
is used to reduce the number of degrees of freedom (DOFs) in the FE model. In the proposed
approach separate SEA and FEA models of different components of the structure are first
created. Sectional boundary forces in the model connecting the FEA and SEA components
are then iteratively determined so that an objective function, involving the difference between
the energy supplied to the structure and the energy dissipated in the structure, is minimized,

see also Lu®.

TWO DOMAIN APPROACH

Consider a structure built up by two domains Vsga and VFgm, see Fig. 1. The domain Vsga
has high modal density and is to be represented by SEA, and the domain Vrgm, the more
stiff domain, is modeted by FEM and reduced using dynamic substructuring.

As indicated in Fig. 1 the two domains are connected along a common boundary. In
the FEA domain the connection between the domains is described by connection forces and
displacements. Displacements are due to both external and coupling loads. In the SEA domain
the coupling is described by the sub-system energy flow, which in turn is described by power
supplied by coupling forces between the domains. The governing state equations for the
two domains are then solved separately at every frequency step iteratively, with the common
connection forces as iterative variables, until the energy based objective function is fulfilled.
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Figure 1. Domain Vsga is analyzed by SEA, and domain Vrgm with sub-domains mB (master
boundary), ml (master internal) and s (slave) is represented by FEA.

SEA DOMAIN Vgga
A SEA energy balance for domain Vgga built up by k subsystems at the analysis center band
frequency w may be formulated in matrix form according to Eq. (1):

wAE=1I 0))

where A is the coupling loss factor (kxk) matrix, E is the unknown subsystem modal energy
(kx1) vector and IT is the (time averaged) supplied power (to the domain Vsga) (kx1) vector.

The power input to Vsgs is given by IIPEA = %Re{EgBXmB} where XmB contains

n
velocity amplitudes of the points of the connection forces and F g contains the corresponding
force amplitudes. Superscript ! denotes Hermitian transpose (i.. transpose and complex
conjugate). The time average response for the system is then obtained by solving the energy
balance equation, Eq. (1) at every frequency step, giving the power dissipated in Vsga as a
function of F_ g, to be used in the objective function. The size of the matrix and vectors in
Eq. (1) is fairly small, due to the fundamental modeling approach in SEA.



FEA AND DYNAMIC SUBSTRUCTURING OF VggyMm

The domain VFgMm, as shown in Fig. 1, is modeled by FEA. This domain is divided into
two sub-domains, one with interior slave (index s) DOFs, X and one with master boundary
DOFs (index m), X,,. The domain m is in turn divided in two sub-domains; one sub-domain
mB in which boundary (or coupling) loads are applied, and sub-domain ml in which external
loads are active. The equation of motion for domain VFgMm is expressed as
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where underline denotes a complex entity, D(w) is the frequency dependent dynamic stiffness
matrix derived from the element stiffness (K), mass (M) and damping (C) matrixes, F'; are
forces applied at the slave DOFs, F_ ; are externally applied master forces, and F, p are
optimization variable forces at the connection points between Vsga and Vrgum.

The reason for dividing the domain VFgy in to two areas is to eliminate the (slave)
DOFs, that are of no primarily interest in the analysis, to reduce the number of active DOFs
in the optimization procedure described below.

There are a great variety of dynamic substructuring reduction methods available.
Generally, for a system under harmonic load with angular frequency w, the system of
equations for the domain containing X, can be partitioned into parts containing the slave
DOFs and the master DOFs. When assuming that no loads are applied to the eliminated
slave degrees of freedom, Fs = 0
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An exact dynamic representation of an undamped substructure is given by the reduced
system of equations in Eq. (6):

(Kex - szex) Xm =Fn 6
The exact reduced stiffness and mass matrices are given by a matrix transformation, according
to Egs. (7-8)
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where Tex (formally) is the exact transformation matrix.
However, the inverse of the matrix Dy, in Eq. (8) is computationally quite expensive to
calculate. If the dynamic system is undamped (C = 0 — S;;(w) = K;;), one has exact by

expansion (Wilson and Josefson3, Leung’)
Dl (w) = K + KM K, + w!®diag [n,.-‘*(rz,? - w2)“1] o7 ©)

where Q2 = diag[Q%, Q2, ..., Q2] contains the undamped fixed interface natural
frequencies, and @ is the corresponding fixed interface modal matrix, that is {2 and ¥ are
calculated for the case when the master degrees of freedom are constrained, and normalized

so that PTM,® =1 and ®TK, & = Q2. The fixed interface modes may be calculated by
an Arnoldi algorithm with spectral transformation (Ericsson and Ruhe?).



If non-proportional damping is present, the damped fixed interface modal matrix ® is
calculated in a different manner. The 2n, where n is the number of slave degrees of freedom,
damped fixed interface modes are calculated from the eigenvalue problem (see Leung’)

[Sss(w) — VM4 ®=0 (10)
In this case the master degrees of freedom are constrained and normalized so that
tI)T(leMss + Css)@ = I. Formally one then has the exact inverse of Dgs(w) by expansion
in the damped fixed interface eigenpairs, according to Eq. (11)

D (w) = Z(zw Q) '@, &7 (11)

COUPLING OF THE FEA AND SEA DOMAINS

To obtain a solution, the complex amplitudes of the master boundary forces F,p are chosen
as design variables at the coupling points connecting the Vsgs and Vpgm domains. For the
Vrem domain these forces will act as external forces (together with the true external forces
F_; which supply the input power to the stiff component). At each frequency w the complex
harmonic response at the connecting points, X g, is calculated using Eq. (2), assuming
F; = 0. For the same frequency, a SEA calculation is performed for the weak component
subject to an energy input at the connecting points, determined by the current values of F_ g
and the impedance corresponding to X 5. In an iterative procedure the magnitudes and
phases (e.g. F,p is complex) of the forces F,p are varied until the following objective
function is minimized
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where ¢ is taken as 1074,

The power expressions in Eq. (12) are

o I, = %Re{EgIX} which is the energy input to the structure Vrga by external forces ¥ ;
* Ilgamp is the sum of the energy dissipated in the stiff component

HX;?; = lRe{X Cexx} and in the weak component IIVSEA = E E; w;.

Here C,y is the reduced damping matrix for the stiff domain VM, and 7n; is the damping
loss factor for subsystem i. Note that the displacements at the boundary between Vrgy and
Vsea, Xpp, are calculated from the FE analysis of Vrgm and used, together with the design
forces F_ g, to obtain the subsystem energies E; in Vsga.

The calculation of the startmg vector of the unknown force amplitudes FmB in the
optimization process is based in the impedance for infinite structures (Cremer et. al.)
connected to the FE model. These approximate subsystems are chosen as the same type of
subsystems as those of the actual connected Vggs domain.

The complete reduced system of equations may be written as

N S

Using the expression for the impedance Z for the connected approximate SEA subsystems
(to approximate the connection between the FEA and the SEA domains) Eq. (13) may be
rewrittenxas F
Dl | .,0 =ml
Dex{sz = Zw{lm}s } +{ 0 } (14)
which can be solved for the unknown coupling displacements. This in turn gives the starting
forces F.p as F 5 = wZX .

The minimization is performed in MATLAB!? using the £mins function, thus employing
an iterative BFGS Quasi-Newton minimization with a mixed quadratic and cubic line search
procedure, which is adapted until the objective function in Eq. (12) is achieved. Since
dynamic substructuring is employed, the size of the problem used in the iterations, to fulfill
the energy balance for the structure, is fairly small.



NUMERICAL EXAMPLE: TRUCK STRUCTURE

To investigate the method proposed above, a harmonic vibration analysis of a structure built
up by one stiff and one weak domain connected at a number of discrete points is performed.
The structure analyzed should resemble a conceptual model of a truck structure as shown
in Fig. 2. In the model the frame and engine constitutes the stiff domain VFgym having 21
eigenmodes up to 100 Hz. The weak domain Vsga is here the cabin, which has more than
20 eigenmodes below 10 Hz. The truck is excited at the engine by a vertical point force.

FE MODEL OF FRAME

The FE model of the frame, as shown in Figs. 2 and 3, is modeled by 138 two-node
Timoshenko beam elements. This part of the structure is taken as undamped. The wheel
suspension is modeled as 8x3 two-node spring elements with translational stiffness in three
directions and hysteretic damping in the vertical direction with loss factor n = 0.05. The
frame-to-cabin connection is modeled by two-node connection springs at four locations.
These springs have translational and rotational stiffness in three directions respectively, and
translational hysteretic damping, with = 0.08 in the vertical direction. Concentrated 100 kg
masses are also added at the four connection points. The engine is modeled as two rigidly
connected 500 kg concentrated masses.

As discussed above, in order to perform many solution steps efficiently, the frame
structure shown in Fig. 3a is reduced using the exact dynamic substructuring approach,
Eq. (6—9). The undamped frame (Fig. 3b) is reduced, retaining the node of load application
(at the engine), the wheel suspension spring elements connection nodes and the cabin to
frame connection points (where damping is introduced). Totally 13 nodes out of 146 are
retained. The reduced FE model is shown in Fig. 3c. It is in the frame-to-cabin connection
nodes that the iteration forces F g are introduced.

a)

Z

y 4

" v
P v v v o e v 2

AVA YR W W W0 B S W0 ¥

OV VAT W e W . AW ¢

Y oy a7 v i sV > &

Figure 2. FEM model of truck structure consisting

of engine, frame, suspension and cabin. Figure 3. a) FE model of engine and frame structure.

b) Unreduced (undamped) frame structure.
¢) Reduced FEM model (dashed)

with retained nodes (dots).

Damped springs added.



SEA CABIN MODEL

The cabin is preferably modeled by SEA subsystems since it has a large number of resonant
modes at low frequencies. The cabin is built up from the geometry in Fig. 4, and represented
by a number of subsystems; six flexural plates according to Fig. 5. The cabin is modeled
in the commercial SEA software AutoSea®, by which the SEA parameters (coupling loss
factors, modal densities etc.) are calculated. Material parameters used in the cabin and in
the frame should resemble steel with Young’s Modulus E = 207 MPa, density p = 7820
kg/m® and Poisson’s ratio » = 0.29. The plate thickness is =2 mm. The cabin is taken
as hysteretically damped with a constant damping loss factor = 0.01. To fully model the
plates used in the model all three wave types should be included; i.e. flexural, extensional
and shear waves. However, when calculating the number of modes in the frequency bands, it
is seen that the number of resonantly excited modes is substantially lower for the shear and
extensional waves compared to the flexural waves. This means that the SEA assumptions are
not valid at low frequencies for these two types of subsystems.

To investigate the validity of only including the flexural modes, one may calculate the
power supplied to a three-wave type plate subsystem through a perpendicular flexural plate
by a point force (which is similar to the subsystem network in the numerical example).
Calculating the vibrational energy for the different wave types in the “three wave type plate”,
shows that the main part of vibrational energy is stored in flexural modes, which indicates
that the assumption to only include these modes in the subsystem network is reasonable.

For the structure used in this analysis, one of the criteria for SEA to be valid, (i.e. the
number of modes in band being >> 1) is well met for the flexural wave type. For the plates
in the SEA model the number of modes in band are for the front/rear 784, left/right 700 and
for floor/roof 580, for a frequency band Aw = 100 Hz.

The subsystems are coupled along the connecting lines, where certain assumptions have
to be made concerning plates joined perpendicular to each other regarding conditions at the
connecting edges. The restriction used in AutoSea* is that no displacements are allowed at
the joint, and that energy transmission is only occurring through bending moment (Cremer

et. al%).
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Figure 4. Geometry of cabin, and mesh of Figure 5. SEA network of cabin built up
reference cabin FE model A containing by six subsystems representing
600 four-node shell elements. flexural modes in thin plates.

REFERENCE CABIN FE MODEL

Reference solution models, where both the frame and the cabin are modeled using FEA,
are obtained using the commercial FE code SOLVIA!l. The model of the frame, engine
and suspension is the same as described above, and the cabin is modeled in two reference
models. Reference model A with 600 iso-parametric four-node shell elements of Mindlin
type, see mesh in Fig. 4, and reference model B with 3936 elements of the same kind (not
shown). The element size used is 0.20 m in reference model A, and 0.08 m in reference
model B, which gives a maximum reliable frequency (Blevins'?) of 61 Hz and 380 Hz with
four elements/wave length, respectively.



CALCULATED RESULTS

Figure 6 shows the calculated frequency variation of the real part of the amplitude of the
vertical displacement at the point of load application. Results using the FEA/SEA approach,
using dynamic substructuring with 30 undamped fixed interface modes (with the highest
mode corresponding to 150 Hz) included in the reduction, are compared with results from
the full reference A FE model. One finds that the FEA/SEA approach seems to miss two
resonances; FEA mode 5 at 25 Hz and mode 7 at 30 Hz. These modes involve in-plane
motion in the floor. Otherwise the agreement is good.
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Figure 6. Calculated frequency variation of the Figure 7. Calculated frequency variation of the real
real part of the vertical displacement part of the supplied power to the
at the load application point on the truck structure. Different number
frame. 30 fixed interface modes are of fixed interface modes used
included in substructuring of frame in substructuring of FE part.

used in combined FEA/SEA model.
Compared to reference model A.

Figure 7 shows the calculated frequency variation of the real part of the power supplied
to the truck structure, that is the active power input using the present FEA/SEA approach
compared to using the reference FEA models A and B with the cabin modeled using some
600 and 3936 shell finite elements, respectively. For the FEA/SEA approach results are
presented for three different levels of dynamic substructuring, including 10, 30 and 60 fixed
interface modes corresponding to 51, 150 and 300 Hz respectively, in the reduction of the
frame structure.

One finds good agreement between the FEA/SEA approach and the reference A model up
to frequencies of approximately 60 Hz where the cabin part of the reference FE model becomes
inaccurate. When comparing to reference model B, which is valid up til approximately 380
Hz, one finds that including more interface modes in the reduction does seem to extend
the validity of the calculated frequency response. Note, however, that there exist no exact
reference solution to the present problem for the frequency range plotted. Such a solution
would require a much denser FE mesh of the cabin part.



DISCUSSION AND SUMMARY

By combining a finite element analysis and a statistical energy analysis it seems possible to
use the advantages of both approaches and obtain a harmonic response over a large frequency
interval. The present approach is particularly useful when the structure analyzed consists
of domains having considerable different rigidities. The state description of the structure is
more detailed in FEA than in SEA. Because SEA is based on energy transfer, phase angles
for displacements and forces are not included in the SEA model. And since this information
need to be included in a FE analysis, the present approach to couple a FEA and a SEA model
involves minimization of the difference between the total power input to the structure and
the total power dissipated within the structure. The procedure is iterative at each frequency.
It is therefore desirable to employ dynamic substructuring in the FE model in order to reduce
the size of the model involved in the minimization procedure. The results show that dynamic
substructuring may be used to reduce the size of the FEA domain system of equations, when
care is taken to which modes that are included in the reduced model. It is seen that as the
mesh of the FE modeled domain is made more dense the results, at high frequencies, from
the combined model get more similar to those of a pure FE reference model. However, it is
believed that the present approach in some aspects need to be further developed; the optimal
level of substructuring in the FE model and the use of robust starting vectors for the design
variables in the iterative minimization procedure need to be further investigated.
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