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ABSTRACT

Presented in this paper is a graphics method called discrete holographic method which
can rapidly interpret the results from the plethora of vibration data. The method
is developed based on the theory of qualitative dynam”cs, the subject of which is
to extract in a qualitative sense the characteristics of the underlying dynam”cs that
governs the behavior of a dynamical system. The proposed discrete holographic is
constructed in a three-dimensional space by three sets of vibration data sampled by

time delays. The three sets of data are called visible vectors in qualitative dynamics.
It is shown in the paper that the number of visible vectors sufficient for vibration
signal analysis is three, which is proposed here to construct a discrete holographic.
The proposed method is used to analyze various types of vibration signals including
transient signals, modulated signals, repetitive signals. The results show that the
method can efficiently reveal the distinctions for difTerenttypes of vibration signals.

1. INTRODUCTION

There are many methods that have been proposed in the literature for vibration signal
analysis, the subject of which is to extract the characteristics of a vibration system
from vibration measurement data. In general, vibration signals can be classified as
deterministic and non-deterministic. The former can be tither classified as linear
and non-linear, and latter as stationary and non-stationary. Most of vibration signal
analysis methods are meant to provide quantitative analysis, such as for structure
identification. However, certain applications may only need qualitative analysis, such
as condition monitoring and diagnosis of machines and processes based on vibration
signals.



Until recently, the development in qualitative dynamics has given rise to the introduc-
tion of qualitative analysis of complex dynamical signals. The subject of qualitative
dynamics is to extract in a qualitative sense from measured signals the characteristics
of the underlying dynamics that governs the behavior of a dynamical system. Quali-
tative dynamics has been extensively studied and used [1][2] in physics for extracting
the complex nonlinear dynamics of physics experiment. In computer science, research
has been carried out on solving qualitative differential equations (QDE) to develop
qualitative reasoning methods for extracting information with incomplete knowledge
[3].

In this paper, we extend qualitative dynamics to vibration signal analysis. A method
called the discrete holographic method is proposed which is constructed by three sets
of vibration measurement data collected by time delays. Various types of vibration
signals including transient signals, modulated signals, repetitive signals, are analyzed
by using the proposed method. The results show that the discrete holographic method
can graphically reveal differences for dtierent types of vibration signals. This gives
rise to the possibility of utilizing computer graphics to graphically extract the distinct
patterns from the plethora of complex vibration data.

2. QUALITATIVE DYNAMICS

2.1 Dynamical System

Consider a dynamical system described by the following differential equations:

k = f(x) (1)

where x is a vector representing a state of the dynamical system. If f(x) is locally
Lipschitz [1], we may write the solution of eqn. (1) as

(2)

where XOis an initial value of x and #t is a function of time. For all possible initial
values, we may obtain a set of solutions. If the dynamical system is dissipative, the
solution set will contract onto a set of lower dimension, called attractor. On the
attractor, the dynamical system has fewer degrees-of-freedom and hence requires less
information to speci~ its state. This gives rise to the possibility of describing a complex
dynamical system qualitatively by measurement data.

The theorem for embeddings serves as a basis for extracting qualitative dynamics
from measurement data. An embedding is referred to as a map @ horn manifold
Al to a space U such that image @(lkf) is a smooth submanifold of U, and @ is a
diffeomorphism between M and @(M). It was proven [1] that in Euclidean space, a
smooth m–dimensional manifold, which is Hausdorff, may be embedded in a n(>
2m + I)–dimensional space.



2.2 Method of Delays

Based on Whitney’s theorem, a method called method of delays was proposed by
Broomhead and King[l] to reconstruct an embedding space horn a time series of mea-
surement data. To describe this method, let us consider a time series of measurement
data at a single measurement point

z(l), Z(2), .... z(i), Z(i+ 1), ... (3)

and define a visible vector U1by means of the so-called (n, J) window as

u,= [z~X2 ... Zk ... Zn] (4)

where
xk = z(I + (k – l)J) (5)

Note that U1 is defined as a row vector, n is the dimension of the visible vector and J
is the time interval. A visible vector means a vector containing n visible data points
separated by time interval J. For a total of NT data points, the number of the visible
vectors that can be constructed is equal to

N= NT–(n–l)J

J

These vectors are used to form the Nx n trajectory matrix U given below

u = [u:, u;, ...ufl T

(6)

(7)

where the kth element of Uzequals to z(1 + (1+ k – 2) J).

A visible vector defined in the (n, J) window constitutes a vector in the embedding
space. As the time series advances in a step of J through the window, a sequence of
vectors in the embedding space is generated, forming a discrete trajectory. A discrete
phase plane can be constructed by plotting two adjacent visible vectors against each
other in a two-dimensional plane. As shown later, the discrete phase plane is one
of three projections of the discrete holographic proposed in this paper. For given
sampling frequency f,,the sampling length Tw of the (n, J) window should be ~W>
(2m+ 1)/f..

3. RELATION TO VIBRATION SIGNAL ANALYSIS

We use the method presented by Ibrahim [4] for modal analysis in time domain to
show how the method of delays can be related to vibration signal analysis. Let us
start with considering the following vibration equations

where v = [XT, x~~ is the mdimensional vector; x is n/2-dimensional displacement
vector; k is n/2-dimensional velocity vector; and A is the nx n matrix consisting of
mass, damping and stiffness. The response x can be expressed as follows

x=Pe (9)



where P is the n/2x n mode matrix; e = [eJlt e~zt... eJ’t ... e~”t]’; and ~, is the rth
eigenvalue.

For the sake of modal analysis, Ibrahim suggested to construct the following three
matrices by carrying out measurement at m measurement points and collecting the
data in three difference periods of time separated by a time delay At that is

x = [xl X2 ... xi ... Xn]
Y = [y~yz ... yi ... y~] (lo)
Z = [Z, 22 . . . Zi . . . Z~]

where xi = Pe(ti); Yi = Pe(~ + At) and zi = Pe(~ + 2At).

Considering eqn. (10) in row vectors, in analog to eqn. (7), eqn. (10) can be considered
based on the method of delays formed by (n, At) windows for all measurement points,
and the number of visible vectors for each window corresponding to each measurement
point is three.

To show how eqn. (10) can be used for modal analysis, we may re-write it in view of
eqn. (9) as follows

X=PE
Y=QE (11)
Z=RE

where Q = PA; R = QA; E = [el e2 ... e2J and A = dzhg[e~rAt].Then we form the
following two matrices

@ = [XT,Y~T; & = [YT, zqT (12)

which can be re-written in view of eqn. (11) as

@= @E; 6=+E (13)

where
V= [P~, Q~T; &= [Q~, R~~= !PA (14)

In view of eqns. (13) and (14), we can have the following characteristic equation

BP= !PA (15)

where B is the characteristic matrix given as

B = &@-l (16)

The eigenvectors of eqn. (15) represent vibration modes. Natural frequencies and
damping ratios can be determined horn the eigenvalues of eqn. (15). In other words,
data construction of eqn. (10) is sufEcient for modal analysis. Vibration signal analysis
may be considered as a subset of modal analysis as it is generally concerned about
analysis of vibration signals for individual measurement points, without referring to
vibration modes.



4. DISCRETE HOLOGRAPHICS

4.1 Description of the Method

As discussed in the previous two sections, based on qualitative dynamics, the data
matrices constructed by time delays can be used to extract the characteristics of the
underlying dynamics of a dynamical system. In light of modal analysis in time domain,
three sets of vibration data collected by time delays are sufficient for extracting the
characteristics of vibration signals. On the basis of these two concepts, we propose to
use three sets of vibration data to form a discrete trajectory in a three-dimensional
space. We call this method discrete holographic method, as it uses the discrete (sam-
pled) data to provide an overall information for vibration signal analysis by using a
three-dimensional graphics.

4.2 Selection of Window Parameters

As described in the previous subsection, the discrete holographic is constructed by
three visible vectors formed based on the method of delays by means of (n, J) window.
For given total of NT data points, since N = 3, horn eqn. (6) we know that n is bound
by

n< (NT - 2J)
—

J
(17)

The parameter J is two fold. First, J is the time interval between two adjacent data
points for the same visible vector. By virtue of signal processing theory, for J >1, it
represents sub-sampling. To obtain smooth trajectories J should be in general close
to the following ratio

o! = f,/fn (18)

where ~. stands for the highest frequency of interest. It is said undersampled when
J > a and oversampled when J < a. As an example, Fig. 1 shows the discrete
holographic for the vibration response of an un-damped free vibration system, with
cz = 4.5495. Fig. l(b) is for J = 4, m a, showing a smooth limit cycle; Fig. 1(d) is
for J = 2, < a, oversampled, showing a dense and wide limit cycle; Fig. 1(f) is for
J = 20, > a, undersampled, showing a coarse and wide limit cycle.

Second, J is related to the lag time between visible vectors, as it can be seen by
referring to eqn. (7). The lag time causes the phase delay between two visible vectors.
If there is no phase delay, the two visible vectors are said positive correlated; if the
phase delay is 180°, they are said negative correlated. For the un-damped free vibration
system, the major axis of the limit cycle is close to the diagonal line when the phase
delay is within the range from –90° to 90°, whereas it is close to the antidiagonal line
when the phase delay is horn 90° to 270°. This is demonstrated in Fig. 2(c)(e) and (f)
with the phase delay equal to 316.52°, 158.26°, 142.60°, respectively.



5. VIBRATION SIGNAL ANALYSIS

5.1 Modulated Signal

There are two types of modulated vibration signals, amplitude and phase modulated.
The modulated vibration signals are produced when the response of a vibration system
is fiected by that of another vibration system. For example, in gear transmission
boxes, the vibrations due to gear faults could be modulated by the vibrations of the
rotating shaft due to imbalance.

Shown in Figs. 2(a) and (c) are the amplitude and phase modulated signals of Fig. l(a),
respectively. As compared to the discrete holographic of the original signal shown
in Fig. 1(b) which is disk-shaped, that of the amplitude modulated signal shown in
Fig. 2(b) is stretched like a spiral, whereas that of the phase modulated signal shown in
Fig. 2(d) becomes like a pile of straws. These distinct patterns can be used to identify
graphically the modulation in the vibration signals.

5.2 Transient Signal

Transient signals could change in amplitude or in frequency or both, which could be
caused by a changing external disturbance to the vibration system. For example,
blasting generates an amplitude transient (damped) vibration in the mining machine,
whereas starting-up of the engine changes the frequency of the forced vibration of the
airplane due to rotor imbalance.

Figs. 3(a) and (c) shows the vibration signals with changing amplitude and frequency
changing. As shown in Fig. 3(b), in case of amplitude changing vibration, the tra-
jectory in the discrete holographic will converge. As shown in Fig. 3(d), in case of
frequency changing vibration, the multi rings (for un-damped flee vibration) appear
in the discrete holographic, indicating the different ilequencies.

5.3 Repetitive Signal

Repetitive signals are those caused repetitive impulses. Examples include bearing
and gear defect-induced vibrations, plasma torch vibration due to arc striking, veneer
peeling knife vibration due to wood grain variation, etc.

Fig. 4(a) shows a series of repetitive damped vibration signals and Fig. 4(b) shows its
discrete holographic. In this case, one should choose smallest J(= 1) in order to show
the nature of the damped vibration signals.

Fig. 5 shows the analysis of defect gear vibration signals. Fig. 5(a), (b), (c) and (d)
represent baseline (normal condition), pitting, spalling, and scu.fhg, and clearly their
patterns are difTerent.

6. CONCLUSIONS

In thk paper, we have proposed a graphical method called the discrete holographic for



vibration signal analysis. We have laid down the theoretical foundation for the method
based on the qualitative dynamics and the modal analysis in the time domain. The
three sets of data, namely three visible vectors, are sufficient to extract the vibration
parameters. The results of analyses of the simulation and measurement data show
that the proposed method can graphically extract the patterns for difFerent types of
vibration signals.
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Figure 1 Un-damped vibration signals and their discrete holographic
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Figure 2 Modulated signals and their discrete holographic
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Figure 3 ‘Ikansient signals and their discrete holographic
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Figure 4 Repetitive signals and their discrete holographic
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Figure 5 Discrete holographlcs of defect gear vibration signals


