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An efficient impact damperconsists of a bed of granular materials(shot) moving in a container
mounted on a multibody vibrating system. This paper deals with the damping characteristics of a mul-
tidegree of freedom(MDOF)system that is provided with the shot impact damper. In theoretical analysis,
the particle bed is assumed to be a mass which moves unidirectionally in a container, and collides plas-
tically with its ends. Equations of motion are developed for an equivalent single-degree-of-
freedom(SDOF)system and attached damper mass with use made of the normal mode approach. The
modal mass is estimated such that it represents the equivalent mass on the point of maximum displace-
ment in each of the vibrating modes. The mass ratio is modified with the modal vector to include the
effect of impact interactions. Results of the analysis are applied to the special case of a three-degree-of
freedom(3DOF) system, and the effects of the damper parameters including mode shapes and the num-
ber of dampers are determined. A digital model is also formulated to simulate the damped motion of
the physical system. Numerical and experimental studies are made of the damping performance of
plural dampers located at selected positions throughout a multibody system. In this report, the impact
vibration model, including the motion forms comprising contact or separation of damper masses on vi-
brating bodies is developed, and the resulting formulation is analyzed by using the modal synthesis
method. For the N units of damper case, the existence of as many as 2N combinations of motion forms
are identified through digital simulation. Results of analytical and simulation studies, applied to a three
degree-of-freedom system, were compared to, and were found to be in good agreement with, experi-
mental results. It is found that shot impact dampers with properly selected mass ratios and with con-
tainer clearances effectively suppress the resonance peaks over a wide frequency range.

1. INTRODUCTION

The impact damper is an effective vibration absorber using a solid particle free to move in a container

attached to a primary vibrating body(Grubin, 1956; Masri, 1969). Some authors have reported the ap-

plication to the actual machine parts to reduce the resonance vibrations(Panossian, 1992; Skipor, 1980).

The objective of the present study is to investigate the damping performance of the impact damper with
granular material(shot) when applied to multibody system. The authors have presented analytical ap-
proach for predicting the damping performanw of the shot impact damper applied to a single-degree-of-
freedom(SDOF) system(Araki et al., 1985). Masri(1973) has reported the response of a multidegree sys-
tem(4 to 10 story building) equipped with a solid impact damper, and presented the exact solution for the
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steady-state motion of the system. Roy et al.(1975) also studied the motion of a beam system under the
action of an impact damper by seminumerical technique. But for the multibody system subjected to im-
pact and/or sustained contact of shot, it is obvious that an exact analysis of such a system is very com-
plicated. In this report, therefore, we propose an approximate analysis for the motion of the multibody
system provided with shot dampers by developing equations of motion for its equivalent SDOF system
by means of modal analysis. Numerical simulations studies were carried out for the motion of the system
by developing solutions valid between impact and contact of the damper mass. Experiments with a
structure of three-degree-of-freedom(3DOF) system using lead shot as a damper mass were conducted to
corroborate the theoretical results. The effects of the number of damper units, container clearance, and
mode shapes on the damping performance were considered.

2. EQUATIONS OF MOTION AND ANALYSIS

2.1 FORMULATION The schematic model of the multidegree-of freedom(MDOF) oscillating system
equipped with the shot impact damper is shown in Fig. 1. The damper consists of a particle bed of mass
md, constrained to move vertically, with clearance dj, in a container attached to jth vibrating body. In the
analysis, the particle bed is assumed to be a mass which moves unidirectionally without friction and col-
lides plastically with bottom or top end of damper container. Thus the possible motions of the damper
system can be divided into the two kinds of motion segments. In the sustained contact segment, the
damper mass moves together with the primary mass after impact at container ends, while in the separate
segment, the damper mass moves freely in the clearance.

The equation of motion for each segment can be written in the matrix form: these are, respectively, for
separate segment(free flight phase)

[m]{i} + [c]{x} + [k]{x} - {f} sin w t (primary body)

mo J --m~g> (j-L2)...,N), (damper mass) (1)

and for sustained contact segment (riding phase)

[mcl{xc}+[cl{~t}+[~l{xc}={f}sinCO~-{md}g
(mCb=mj +mh)$ (primary body and damper mass) (2)

where [m], [c], [k] are the mass, damping, stiffness matrices, {x} denotes displacement vector of the

separate segment, ~ the exciting force vector, and {xc} that of sustained contact segment,

{f}r =(o,...,o, f,,o,..., 0) ,{md}~ = (m~~>...,mdj>md~)md~), t = time, W‘exciting frequency, and g =

acceleration of gravity. Applying the coordinate transformations
{x} = [f#]{q}, {xc} - [+, ]{X, } , (3)

where [@] is the modal matrix, {q} the normal coordinate for the separate segment, and [@c]and {q, } are

those for the sustained contact segment, equations (1) and (2) are transformed, under proportional
damping, into the form

[M]{ij} +[C]{cj} +[K]{q} =[@]’{f}sin@t (4)

[Mc]{gC} +[Cc]{gC} +[KC]{qC} =[@c]T{f} sinot-[@C]'{md}g, (5)

where [M]([ Mc ]), [K]([KC ]), and [C]([CC]) are diagonal matrices corresponding to the modal mass,

stiffness, and damping matrices, respectively. The ith mode equation of the system (4) and (5) are repre-
sented as follows:

M,qt +C,q+Ktq, = @bf, sin cot (6)
N

A4ciqci + Ccigci + Kciqci = $Ctifk sin@t - g~@cjimdj (i= 1,2,..,,n)
)-1

(7)

and their solutions, together with the motion of the damper mass yj, are given by
q, = exp(-O,t)[A, sin cr,r + Bj cosa,z] + AP,sin(~ -~, -p) (8)

qc, - exp(-8c,~)[Ac, sina,,r + B,l cosa,fr] + Aw,sin(z - Bc,- q) - y, (9)

Yl, =-KR(T-’ro,)2 /2+ D,j(r-ro, )+J5,J (upwards) (lo)

Y2,
= -KR(t-r2,)2 /Z+~2,(~-~2,)+EZJ (downwards) (11)



where p is phase lag of exciting force with respect to impact at bottom, Zoj time of separation from

bottom, and Tzj time of separation from top, and T“= cot . The parameters of the ith mode are given

mined by the boundary conditions for each segment of motion. The complete behavior of the system, as
given by Eqs. (8) to (11) can be very complex, even for single-unit damper. The exact solutions for the
periodic motion are difficult to obtain due to need of solving 2N to 4N nonlinear equations (N is the
number of damper), corresponding to the type of periodic motion. Hence, a method based on approxi-
mating the system by an equivalent SDOF system has been developed to study the damping effect of the
impact damper on multibody system.
2.2 APPROXIMATE ANSALYSIS. Let us assume that the vibrating multibody system has well-
separated resonances whose resonant peaks are primary concern of vibration reduction. Over relatively
wide frequency ranges near natural frequencies, it can be represented as a SDOF model with parameters
MbCi, and Ki ( as shown in Eq.(6)), forced harmonically at resonant frequency O,, as shown in Fig.2, In

order to suppress ith mode vibration by applying the damper, it is necessary to estimate the modal mass
Mi so that it can represent the physically equivalent mass on the damper location. To this end, we nor-
malize the modal vector {@,} associated with every one of the natural modes, with the value of the larg-

est element of the vector equal to unity. lle resulting modal parameters are given by

[Mi ] - [~] ’[m][~], [K,]= [~] ’[k][~], [C, ] - a[M, ] + /3[K, ], (12)

where [~] is a modal matrix with normalized modal vectors {~ }‘s, and a and B are constants used for

specifying proportional-type damping.
Furthermore, in view of the fact that for a SDOF system provided with the shot damper, the damping

effect varies with the acceleration level of the vibrating body(Araki et al., 1985), factors are involved in
modifying the impacting mass ratio pertaining to a specified mode. Since the acceleration within the
vibrating multibody system is proportional to the modal amplitude {#J,}, the effect of the damper location

on the response of ith mode can be approximately estimated by the total mass ratio

(13)

Thus, using the assumed mode approach retaining only one mode of the vibrating multibody system, the
same analysis as the one developed for the SDOF system(Araki et al.,1985) can be applied to Eqs.(6) and
(7) to study the damper problem of the multibody system.

Among the major impact vibrations that exist in the vertical SDOF damper system are following:
(1) Type I motion. The damper mass leaves bottom end at time ~, when the acceleration of the primary

body reaches -g. The mass then hits top end at time T,, and keep contact with it until the acceleration

reaches g at time ~, (Fig.3(a)).

(2) Type II motion. Motions without sustained contact on top end; the damper mass rebounds just after
impact at top end (Fig.3(b)).

(3) Type ILlmotion. Motions in which the damper mass hits only bottom end when the clearance is too
large (Fig.3(c)).

It remains now to find the steady-state solutions to the motions of the MDOF system subjected to the
impact damper, using the approximate SDOF design technique.

The method for calculating the response of the equivalent SDOF system to the shot impact damper is
based on adjoining the successive motion segments over one cycle of the excitation by the condition of
periodicity. To illustrate the procedure, consider the periodic motion of Type II shown in Fig.3(b), where
the displacement and velocity of Modal mass ~i and damper m= mdj are shown for one period of the
excitation. Due to the nature of the periodic motion, the solutions in Eqs.(8)-(11) must satisfy the fol-
lowing conditions:

At T =O:qd(o) = pc,, q:(o) -lJc,,lJ., = (p, ~b,+%, )/(1+ P,)> (14)

At T-zo:qd (To) -q,, (to) -y,, (zo)-p,,9: (~o)-9:, (~o)-Y;, (~0)= u,> (15)



'tz=~, :q,,(r, )=q,2(T, )- Pc2,y,, (T,)=y2, (z,)=p.2+d, )~i\(zl)-ub2,
Y3’1(~) = ‘b2J qi’z(tj) - Y2)(ZI) - ‘C2YUC2 = (~lvb2 ‘“b2)/(1+ UI)Y (16)

At ~ - ti :qiz(h) = yz, (h) = PC,,q;~(2X) = ‘b,, y;, (~) - ‘b, c (17)

Substituting Eqs.(8)-(11) into the reIations(14)-(17) leads to a set of three coupled algebraic equations in
the form:

adA. +9~B~ + Ri~i +R2BZ +K, (2z –~,)p, /(1+ p,)= O (18)

R3~ + R4BU+ a,,~ +a4Bz - K,(TI - 2X)212 -d, = O (19)

R,~. +R6BU-B. -KJ2.m-z1)2/2+d, +K,pi =0, (20)

together with the linear algebraic equation:

-0 a,, O 0 a,, a,,

a2, az an aM O 0

aaNa~OO’31 32

0 0 a,, ati aa ati

%1 afl 0000

OOaaatiaG ati

AC,

B.

A,,

B,,

42,

B2,

b,

b,

b,

b,

b,

b,

(21)

that determines the integral constants in Eqs.(8) and (9). The remaining terms are available in
Araki et al. (1985). -

Using the values of the specified modal parameters and employing numerical techniques for the solu-
tion of nonlinear algebraic Eqs.(18)-(20), the values of ~, ,~, and p can be determined. Then, the dis-

placement of the modal mass Mi can be found by evaluating q,,(z), q,2(T), and q.(T), respectively, for

each motion segment.
2.3 SIMULATION STUDIES In view of the preceding approximate SDOF technique which requires
the closed-form solution, an alternative approach to the exclusive reliance on analytical methods to esti-
mate the response is to utilize simulation techniques. In motion of the vibrating multibody system under
action of the shot damper, there may occur impact vibrations other than those with the three types dis-
cussed previously. Simulations of the damped motion are performed to investigate the transient and
steady-state response of the damper system by formulating the digital model.

Integrating the equations of motion (1) and (2) yields the following general solutions:
For separate segment (z a 74 ):

{x.} = [G,(z -z,,)l{x,o}+[G2(T-q)l{x,o} -[G,(T -z.)l{MTg)} -[G, (T -T,, )1{~2 (~,, )} + {L (T)}

Y, =- K,(r-T,, )2/2+ i,, (Z- T,, )+X,, , (22)

For sustained contact segment (T z z~ ):

{x.} = [G,,(z-z4)]{x.,} +[G& -Z4)l{X,0}-[%(~-?d)l{L(Zd)} -[ G,.(T - z., )I{k (T.,)}+ {h (~)}, (23)
where ( {x,O}, {i,O} ) and ( {xcO}, {-icO} ) are the initial conditions for the separate and contact segment,

respectively, and T$ is time when jth damper leaves the container end, Td time at impact, and where

[G,(T)] - [@][U(~)][Q],[GJt)] = [@]~(@][Q], [G,(z)] = [@][U(T)],

[G, ]= [43][V(T)],[Q]- [M]-’ [@]’[m] . (24)

[W, [V, {h, }, and {h2 } are diagonal matrices and vectors with elements

Uti(~) - exp(-(l,z)[(fl, /a, ) sin air+ cosct, r)], VU(r) - exp(-6, ~)(1/ a, ) sin air

hU -AZ sin(r-~, ),hz -Ap cos(t-/3, ),(i =l,z, . . . . ..n) (25)

and the undefined matrices and vectors with subscript c are those for the contact segment.
To proceed the computation of motion undergoing impacts and separations of the damper masses, it is

necessary to evaluate the modal parameters, every time the damper masses change their respective phases
of motion, that depend on the mass of the vibrating main body, varyin spatially and temporally within

$
the system. These modal parameters can be evaluated beforehand for 2 possible combinations of motion
phases just once and then stored for reuse. The calculation routine tests the phase of motion when any
damper mass makes a transition from one phase to the next, and changes the current modal parameter to



the one associated with a new combination of motion phase.

3. APPLICATION

The utility of the proposed equivalent SDOF design technique is demonstrated by considering an ex-
ample structure with a 3DOF system shown in Fig.4(a) whose natural frequencies, mode shapes, and
damping properties are obtained from experiments, Since in this case n=3, the natural frequencies are
O, = 8L9 rad /s, C02 = 243.9 rad /s, and m, = 3123 rad /s, and the corresponding three modal vectors are

{4}’ a (037,0.77,1),{~}’= (4057,-0.91), and {fi}’ = (-0.96,4-0.47), respectively. Figure 4(b) shows the
frequency response curves without damper for three masses ml, ma and m3.

If this system is provided with a single or three-unit shot impact dampers for properly selected clear-
ance, the simulated frequency responses in its third mode are given by Fig,5. The displacement wave
forms at the frequencies marked by a, b, and c in Fig.5 are shown in Fig.6. In Fig.6(a), a single damper is
attached to mass m2, i.e., a loop point, and in Fig.6(b) three dampers are applied simultaneously to mass
ml, m~ and m3, respectively, with the identical clearance. The results in Fig.5 show that what effects can
be obtained by using plural dampers instead of the single unit damper, with all tuning and excitation
parameters remaining the same. There are amplitude reductions around resonance by a factor 1/2.5 to 1/4
of the corresponding response of the single damper. The simulation wave forms indicate that three types

of damper motions exist, and Type I motion shown in Fig.6(a) enhances the motion of main mass by

sustained contact of damper mass at both ends; while, for plural dampers, Type II and Ill motions effec-
tively attenuate the resonant amplitude, as shown in Fig.6(b) and 6(c).

4. EXPERIMENTS AND DISCUSSION OF RESULTS

Experiments with shot impact dampers were conducted on a 3DOF model of the resonant structure to
correlate the theoretical and experimental results. Figure 7 shows a construction of the apparatus and
measurement system. Each main body incorporates a container tube of 40 mm diameter by 120 mm long
with two flange ends, and it is supported by leaf springs. Using a screw mounted on the top flange, the
clearance can be adjusted. The dimensions of the structures are : ml =0.74 kg, m2=0. 71 kg, and
m3=0.64kg; kl =24.3 kN/m, k2=21.8 kNlm, and k3=19.8 kNlm. A bed of lead shot of 2 mm diameter is put
in the container as damper mass. The sinusoidal force is put to ml by electrodynamics sweep shaker
through a coil spring (ko=6.6 kN/m). Four piezo-electronic accelerometer with amplifier incorporating
integrating circuits are used to measure displacements of main bodies and the shaker table. Transfer
functions in terms of compliance are calculated between response and excitation points by a personal
computer.

The effect of the number of damper on the damping performance up to the third resonance is shown in
Fig.8 , The dotted curve A represents the measured response without damper, and solid curves B, C, and
D are the ones for a single, two, and three-unit dampers, respectively, with d =~, and identical mass
ratio p, (=mdj /mj)=10 Yo. It can be observed from the figure that a single damper m~, exerts damping

action to the second and third resonant vibrations by virtue of amplification effects associated with cor-
responding modal amplitudes, while two and three-unit dampers can exert cumulative damping effects to
each of the vibration modes. The effect of increasing the number of dampers is prominent for higher
resonances except for fundamental one. This is because the damping performance of shot impact damper
deteriorates with lower acceleration level of main vibrating body.

The equivalent SDOF design technique was applied to the 3DOF system with the impact damper for
each of its vibration modes. The results of these analyses are compared with those obtained by experi-
ments and simulations. Figure 9 shows the frequency response of the system with a single damper lo-
cated at j=2 for the third mode, when the clearance is optimized such that only Type II motion appears
within resonance. The left-hand side ordinate in Fig.9 is the compliance of the primary mass with and
without damper, while the right-hand side ordinate represents the impact phase q, time of separation

from bottom ~0, and time of impact at top ZI. In the graph, the equivalent SDOF solution is shown as

solid curves. For the sake of comparison, the graph also contains the two kinds of modal curves of the
3DOF system, one for the absence of the impact damper, the other for the main mass equal to
m, + m,, (i.e., with damper mass stuck on the primary mass). These are shown, respectively, as dotted and



interrupted lines. It is seen that there are generally close agreements between experimental results and
those of predictions by the equivalent SDOF technique as well as simulations. Figure 10(a) demonstrates
the comparison between simulation and experimental results of the response of the system with mass
ratios P, = 1070, and d, - OJ(j - 1,2,3), up to the third resonance, and Fig. 10(b) shows its impulse re-

sponse of acceleration by experiment. There is generally close agreement between them in the region of
resonance except for antiresonant regions. The differences in these regions is attributed to the deterio-
rated noise level of the accelerometer used in experiments. In Fig. 10(b), the three units shot damper at-
tenuates the free oscillation faster and more effectively.

5, SUMMARY AND CONCLUSIONS

An approximate analysis has been presented for determining the damping characteristics of a multi-
body system that is provided with the shot impact damper attached to some arbitrary point of the system.
The equations of motion are developed for the equivalent SDOF system and attached damper masses by
means of the normal mode approach, and steady-state solutions to the motion of the MDOF system sub-
jected to the impact damper was derived using SDOF design technique. Results of the analysis were
applied to a 3DOF resonant structure, and the effect of the number of dampers on the damping perform-
ance were investigated. It is shown that multi-unit dam,pers with properly selected mass ratios and clear-
ances effectively suppress the resonant peaks over a wide frequency range. Experimental studies with a
resonant model and digital simulations were performed to verify the validity of the analysis. Good corre-
lation was obtained between the theory, experiments and simulations.
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