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ABSTRACT

Harmonic wavelets have simple formulations in the frequency domain and they have
proved a good basis for the time-frequency mapping of transient signals. Moreover their
computational algorithm allows bandwidth to be chosen arbitrarily so that they offer a
variable Q transform, where Q is the ratio of centre frequency to bandwidth. In contrast,
the short-time Fourier transform and the Wigner-Ville frequency decomposition method
are constant bandwidth transforms, so that Q increases as frequency rises.

Although properties of wavelet orthogonality may be used to permit easy retrieval of the
input signal, to achieve a high-definition time-frequency map more data is required than
that obtained from a single decomposition of the input signal. This is achieved by
repeating the frequency decomposition for different, overlapping bandwidths in order to
increase the number of points that can be plotted.

Because bandwidth can be chosen arbitrarily, a frequency zoom feature can be
incorporated into the harmonic wavelet transform algorithm. Also, because harmonic
wavelets are complex, with real and imaginary parts, phase variations can be studied.
Local changes in the spectral composition of a signal can be recognised, using either
wavelet amplitude or phase as the discriminator. Examples of frequency zoom and of
segmentation by amplitude and phase are given below. They demonstrate that the
complex harmonic wavelet transform offers a computationally-efficient method of signal
decomposition. Its principal advantage over the STFT is its variable Q property which
becomes important when large amounts of data have to be processed.



THE HWT ALGORITHM FOR TIME-FREQUENCY MAPPING

Frequency versus time decomposition is possible by the short-time Fourier transform
(STFT) and the Wigner-Ville method. The application of the first method is common
and it offers a practical and conceptually simple route for time-frequency analysis. Its
disadvantage is that it produces frequency coefficients for harmonics uniformly spaced
across the whole frequency spectrum. For example, if an N point (real) time series is
decomposed by the FFT there will be N/2 complex frequency coefficients covering the
range from zero to the Nyquist frequency. Each harmonic is a constant frequency step
from the last, so that the frequency interval is Nyquist/(N/2). This means that to achieve
close frequency resolution at the low frequency end of the spectrum, many high
frequency harmonics have to be computed.

The Wigner-Ville method of analysis is an alternative method (see, for example, Cohen,
1995) which relies on the result that the spectral density of a signal is the Fourier
transform of its autocorrelation function.  For a stationary random process,
autocorrelation is a function only of the separation time 7 and then spectral density is
independent of absolute time ¢. But for a transient signal, frequency composition changes
with time and autocorrelation is a function of 7and . Then spectral density is a function
of absolute time 7. Its amplitude is a measure of the distribution of energy over frequency
and time. In practice there are complications due to the cross-terms that occur when two
or more distinct frequencies interfere with each other because of the squaring operation
involved in computing the second-order correlation function x(¢)x(¢+7) (Mark, 1970).
There are various ways of overcoming or at least greatly reducing this effect (Cohen,
1995; Hammond (ed), 1997) but there are two drawbacks. One is the high computational
effort needed to compute the smoothed Wigner-Ville distribution. The other is the
consequence of using an FFT computation to find the Fourier transform of the
correlation function. As for the STFT this computes frequency components that are
uniformly spaced on the frequency scale, so that to achieve acceptable resolution at low
frequency, an excessively large number of harmonics may have to be computed at high
frequency.

The harmonic wavelet transform is illustrated in figure 1 (from Newland, 1997a).

This makes the calculation

a(t)=if(T)W*(T‘t)dT- (1)

Knowledge of the wavelet coefficient a(#) provides information about the structure of the
input signal f(?) and its relationship to the shape of the analysing wavelet w(?). Because
we are allowing for all the quantities to be complex, w*(?) the complex conjugate of w(?)
appears in (1) (see Newland, 1993a). When f{7) correlates with w*(z-2), then a(?) will be
large; when they do not correlate, a(?) will be small. More information is obtained if the
process is repeated with a different wavelet function, wy(#). Any basis functions w(#) can
be used but to be a good method of identifying time-frequency distributions, it is



necessary to choose windowed harmonic functions with strong (i.e. localised) frequency
content. Harmonic wavelets have this property. They are easy to use and have important
advantages for vibration analysis when detailed time-frequency maps are required.

One advantage is their simplicity in the frequency domain. The algorithm illustrated in
figure 1 begins by converting (1) from the time domain by taking Fourier transforms to
give (see for example Newland, 1989, ch. 9)

A(w) = F(o)W *(o) @

where the quantitites shown with capital letters in (2) are the Fourier transforms of the
corresponding quantities in (1). In order to make practical calculations, these Fourier
transforms are computed by applying the FFT algorithm. It is a simple operation to
compute the FFT of the input signal and it is then necessary to multiply this, term by
term, by the complex conjugate of the FFT of the wavelet to be used. For the complex
harmonic wavelet (Newland, 1993a, 1994a), the Fourier transform W(w) is especially
simple. It is zero everywhere except in a finite band of frequencies defined by

m2n<w<nlw 3)

where m<n and need not be integers. Within this band it has the constant (real) value

W(w)=1/{{n-m)2r}. 4)
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Figure 1.  Harmonic wavelet transform used to compute the time-frequency
distributions in this paper. The wavelet coefficients a, define the

distribution of (complex) amplitude in the frequency band m2n < @ < n2n
(for a record of unit length), from Newland (1997b).

Because the wavelets are complex, their Fourier transform is one-sided, so that W(w)
remains zero for all negative frequencies. For comparison, the algorithm of the
orthogonal harmonic wavelet transform is shown in figure 2. For an input signal f{?)
which is sampled N times to give the sequence fo, fi, /2, ... f1, the algorithm in figure 2



produces n-m complex wavelet coefficients whose frequency is defined by the width of
the block W, * (instead of N wavelet coefficients for the same block in figure 1). They are
the result of making the correlation calculation in (4) for the centre of the wavelet w,, »(?)
at each of n-m equally-spaced positions along the time axis.
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Figure 2.  HWT algorithm for computing complex orthogonal wavelet coefficients for
a time series of N real terms (from Newland, 1997a)

It is shown in the theory of harmonic wavelets that, if the calculation in figure 2 is
repeated for all frequency blocks that cover the range 0 to the Nyquist frequency, with
each block touching but not overlapping the next block, then a set of N/2 complex
wavelet coefficients is generated that describes the amplitude and phase of a complete set
of N/2 complex orthogonal harmonic wavelets.

A disadvantage of wavelets generated in this way is that their localisation in time is poor,
with the envelope of the wavelets decreasing only in proportion to 1/£. Localisation can
be much improved by windowing the wavelet Fourier transform W;* before making the
computation in figure 1. This destroys the orthogonality of the wavelets but much
improves their ability to extract frequency data from the input signal. For signal
deconstruction when it is desired to learn as much as possible about the content of a
signal and reconstruction is not important, the loss of orthogonality is not important.
Furthermore it has been found (Newland, 1997a,b) that the clarity of time-frequency
maps generated by the HWT can be greatly improved by interpolating between the n-m
wavelet coefficients computed in figure 2. This is what happens in figure 1. Instead of n-
m coefficients, figure 1 generates N coeflicients which are evenly spaced along the time
axis at spacing 1/N.

It can be shown (see, for example, Newland 1997b) that the Fourier coefficient 7 of an N
term series will have the same magnitude as Fourier coefficient s of an n-m term series if

r/N=s/(n-m) 5



and they will have the same phase angle (ratio of imaginary to real part) if, in addition, m
is zero (no leading zeros) or if

m/ (n—m) = any integer. 6)
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Figure 3.  Harmonic wavelet map for the acceleration of a pump bearing.
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Figure 4.  Zoom onto a small frequency slice through the map in figure 3.

The algorithm in figure 1 has been used for the examples shown below. For simplicity,
each row of wavelet coefficients is computed for an N term series, with no leading zeros.
Also each wavelet frequency band overlaps adjacent bands in order to improve frequency
resolution. In this way, the energy of a signal is mapped into its frequency bands and
contour or mesh diagrams can be generated to illustrate the distribution of either its
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Figure 5.  Harmonic wavelet map of the impulse response of a beam: (a) amplitude
map, (b) corresponding mesh diagram

amplitude (by plotting the modulus of the wavelet coefficients) or its phase (by plotting
the ratio of the imaginary to the real part of the wavelet coefficients) over time and
frequency. Programming has been done in the Matlab® language; program variables and
commands given below are in Matlab.

VARIABLE Q PROPERTY

Because the frequency block defined by m and » in figure 1 can be chosen arbitrarily,
the bandwidth of the harmonic wavelets can be chosen arbitrarily. Therefore the Q



factor of wavelets can be chosen to suit the signal being analysed. Furthermore the
frequency step between one row of wavelets and the next row can be chosen arbitrarily.
Generally it is found helpful to overlap frequency bands, so that the frequency step is a
small proportion of the bandwidth because this improves the resolution of the resulting
time-frequency map. Also computations do not need to cover the full frequency range of
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Figure 6.  Harmonic wavelet maps of the impulse response of a beam: (a) differential
phase map, (b) corresponding mesh diagram

the signal (i.e. zero frequency to the Nyquist frequency) as they have to for the STFT. If
only a small range of frequencies is of interest, calculations need only be made for that
range. An example is given below.

Figures 3 and 4 are for a measured record of vibration. It is data provided by the
Kennedy Space Center and comes from one of the bearings of a liquid oxygen pump at
the launch equipment test facility for the Space Shuttle. The pump’s shaft rotational



speed is 57.5 Hz (3,450 rpm) and the acceleration has been measured in g’s over a
frequency range covered by the sampling frequency of 9,094 Hz. The data for figures 3
and 4 (and for all subequent figures) is included in table 1 below.
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Figure 7.  Segmentation of an EEG recording based on peaks in
d(j) =sum((abs(A(: j))-abs(A(: j-1))."2): (a) graph of discriminator d(j), (b)
sum(abs(A(:,j)."2) for comparison, (c) map of abs(A(jk)) with segment
markers superimposed

The rectangular “tiles” on the right-hand side of the figures define the frerquency and
time resolution of the map as described in a previous paper (Newland, 1997b). The map
in figure 4 is a zoom onto a short section of the frequency axis. This is obtained by taking
the IFFT (figure 1) only for frequency blocks in the vicinity of the second harmonic of



shaft speed. Although the transform seeks N4=128 frequency steps in the range from 90
to 135 Hz (see table 1), only about 20 steps are possible because it is only possible to
move the frequency block in single integer steps.

PHASE MAPPING

An example used by the author before is for the measured acceleration of a suspended
elastic beam (Newland, 1997a,b). When tapped at one end by a hammer with a soft tip
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Figure 8.  Segmentation of an FEEG recording based on peaks in
d(j)=sum((angle(A(:,j))-angle(A(: j-1))."2): (a) graph of discriminator
d(j), (b) sum((angle(A(:,j)).”2) for comparison, (c) map of abs(A(j k)) with
segment markers superimposed



bending waves are generated which travel backwards and forwards along the beam, being
detected in bursts at the measuring point. However because the system is dispersive,
waves of different frequency travel at different speed. Therefore the measured time
response records a jumble of waves and individual packets of waves cannot be identified.
Figure 5 is a time-frequency map of wavelet amplitude, which is a measure of the
distribution of mean-square signal over time and frequency.

In contrast, figure 6 is a plot of differential phase. It is not hepful to plot absolute phase
because this describes the phase of the wavelet amplitudes at the reference positions of
the wavelets. That depends on the (arbitrary) positions of the reference wavelets. Instead
wavelet difference, for example abs(angle(A(j,k))-angle(A(j,k-1))), where A(.,:) is the
time-frequency array, is plotted. During the bursts of energy when packets of travelling
waves are being detected, there is a steady change of phase and so the differential phase
is small. During lulls between these bursts, the phase fluctuates quite widely and so the
differential phase is high with significant changes from column to column. The
interpretation of differential phase diagrams is a subject of our continuing research at the
present time.

SEGMENTATION BY AMPLITUDE

Figure 7 is an EEG signal kindly supplied by Prof. A. Prochdzka in which significant
brain activity is being recorded for limited spells during an otherwise quieter period of
about 500 seconds. A time-frequency map of wavelet amplitude is shown in figure 7(c).
The top graph, figure 7(a), is a function defined as w(j)=sum((abs(A(:,j))-abs(A(:,j-
1))).~2). This represents the sum over rows (frequency) of the squares of the differences
between amplitudes from one column to the next (that is, from one time position to the
next). The middle graph, figure 7(b), plots sum(abs(A(:,j)).”2), for comparison. The
vertical lines identify peaks in the top graph and these have been projected down to the
time-frequency map below, thereby segmenting the record into different spectral features.
The sharp peaks in w(j) appear to be a good indicator of sudden changes in brain activity.

Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8
Input sequence length (N) : 4,096 4,096 1,024 1,024 64,000 1,024
Output sequence length (N1): 256 256 128 128 128 128
Min. Fourier block length (N2): 16 16 32 32 64 32
Max. Fourier block length (N3): 16 16 32 32 128 32
Number of frequency levels (N4): 128 128 128 128 300 128
Lowest frequency, Nyquist*startf where
startf = 0 0.02 0 0 0 0.45
Highest frequency, Nyquist*endf, where
endf = 0.1 0.03 0.4 0.4 0.2 0.50
Window : Hanning, full block width
Sampling frequency (sfreq, Hz) 9,094 9,094 4,096 4,096 128 4,096
Parameter plotted abs abs abs absangle abs abs
(AGK) (AGK) (AGK) difference (AGK) (AGK)
Contours at 10%, 30%, 50%, 70% max max max max of max max
and 90% of (abs(A)) (abs(A)) (abs(A)) array (abs(A)) (abs(A))

Table 1. Numerical parameter values for the graphs plotted above



SEGMENTATION BY PHASE

The same method may be applied to differential phase by using an array matrix with
wavelet phase having replaced wavelet amplitude. When applied to the beam impulse
example described above, the result is shown in figure 8. Only a limited frequency span
is used covering the range 930 to 1020 Hz. The top graph, figure 8(a), shows very
distinct peaks of phase change at specific times. When these are projected down onto the
amplitude time-frequency map below, it can be seen that they fall almost exactly at the
middle of the valleys between the arrival of bursts of reflected energy of bending waves.
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