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Abstract

The paper is devoted to the problem of sound propagation in stratified waveguide

which is a non–homogeneous liquid layer overlaying multi–layered liquiddastic bottom
with the thin ise–floe of finite width laying on a surface. Influence of the ice–floe to

characteristics of an acoustic field is investigated. For the problem solution the ice

layer is replaced by equivalent in some sense condition on a surface of “defreesed ice”.
Problem with this condition can be easily reduced to the equation of convolution on

a finite interval or, in Fourier images, to so-called modified Wiener–Hopf equation.
To solve this equation we use a method of matrix Riemann boundary problem. It
allows to construct asymptotic formulas for elements of reflection and transmission
mat rices by a small parameter s, characterizing thickness of ice. These formulas are

uniform on icefloe width a. Finally some numerical calculations are given to obtain

quantitative estimates for so-called “critical” ice–floe lengths and to illustrate influence

of absorption in ice on attenuation of acoustic field.



Consider at first a problem of waveguide covered by a solid homogeneous ice layer
with thickness d. Ice layer is simulated by homogeneous elastic layer ([1]). Suppose

that the water layer has constant density POand ice layer has constant density piC~.

Choose an origin of z coordinate at a level of “defreezed” ice, so that low edge of ice
will be at level z = h, where h = ~d, and upper one will be at level z = h – d.

Let a complex amplitude of s;und pressure p(x, z) satisfies in a water layer z E

(h, H) the Helmholtz equation with wave number k. and index of refraction n(z).

Using the Fourier transformation (in dimensionless form)

W(p, z) = r p(z, z) exp(i~pz)dz, p G R, (1)
—co

and taking into account the interface conditions we can replace the elastic layer by an

equivalent ([8] ) impedance condition on the lower surface of ice z = h:

(2)

where ~(p) is the impedance of ice layer.

“Refreezing” ice and replacing it at z E (O, h) by a homogeneous water layer with
density POand index of refraction n = 1, we shall transform the condition (2) to the

equivalent condition at a level of thawing ice z = O:

(3)

1 tg(ko~(p)h) + .f(/J)v(IJ)
where ~o(p) = –— “ ,7(P) = m.

7(P) f(P)7(P)@(~07(P)h) – 1
Acting on (3) by the inverse Fourier transformation and taking into account that

product transforms into a convolution, we obtain:

1

/

ap
p(x~o) + m R I’o(x – s)z(s, O)ds = O, X G R, (4)

where Fe(z) is the inverce Fourier transformation of function ~o(p).

Let e = &h be a parameter characterizing thickness of ice. Simple asymptotic
analysis gives the formulas

(f,(p) = # ~ )+ Al(p) + 0(c5), where

()
4p4 1 – $ (p2 – n;) + nfp2(nf – 2n~) + n~n~

M(p) = –

()
3 ~ 2 [nj +4p2(nf – ni)]

(5)

(6)

Consider then a problem with ice-floe. Change solid homogeneous ice layer consid-
ered above by ice-floe of finite width a. The same computations in this case give the
following conditions on the surface z = O that are valid only in asymptotic sense (at
& + 0):

p(z, o) = O, z G R\ (O, a), (7)



/
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P(~70)+_ ~ FO(X – s) Z(s, O)& = O, x E R, (8)

So, thecomplex amplitude of sound pressure p(z,.z) in the problem with ice-floe
satisfies the conditions (7)–(8) at a level z = O, the Helmholtz equation in z E (O, H)

with wave number k. and index of refraction n(z) (n(z) s 1, in z c (0, h)) and the

standard impedance condition at a level z = H. In Fourier images this condition has
a form

:(1-@)+~odp)~(p, H) = O. (9)

Our goal is to obtail asymptotic formulas on parameters for coefficients of reflection
and transmission matrices.

After the Fourier transformation (1) the Helmholtz equation assumes a form

a2@
+p, z) + k:(n’(z) - p’)w(p, z) = o. (lo)

Consider now the spectral problem (A) for equation (10) with boundary conditions

(9) and *(p, O) = O and spectral problem (B) for equation (10) with boundary condi-

tions (9) and ~(p, O) + ~ . ~(p, O) = O. Denote as (J@;, w~(.z))and (&&, w~,~(z))
eigenvalues and eigenfunctions of the problems (A) and (B) respectively.

Let the j–th mode Vj(x, z) = pj (z) exp(ikopjx) over-runs on an edge x = O. Denote
the perturbated field by p(x, z) , so that p(x, z) = Y(X, z) + ~j(x, z). For selection the
physically correct solution we shall require that p(z, z) satisfied to a principle of limiting

absorption.

Acting on (7)-(8) the dimensionless Fourier transform and making some computa-
tions, similar to [2]- [4] we have the following modified Wiener-Hopf equation:

exp(il.p)x+(p) + X-(P) + G(P)x~,j(~) = ~~(o)g(~)~ (11)

@(Ao) + w .%(/60) ~w+% ) _ 1

where G(p) =
v(p, o) 79(P)= , L = /coa,V(p, z) satisfies

~~o(p + Pj)

the conditions (10), (9) and JOHIll(p, Z)12dz = 1,

X;,j(p) = Ja 8P
o j--(x, O)eiko/4$& + q7;(o)9(P)

Thus, for the function 9(x, z) we have:

Lm fO(P)xJ,j(P) ~(p, z)e_j~op~~p
~(r, z) = –; _

W(p, o)
(12)

By extracting normal modes from this integral representation, we have the following
formulas for coefficients of transmission and reflection matrices:



where 61,j is the Kronecker symbol, n is a number of guided modes.
Taking into account zeroes and poles of symbol G’(p) in equation (11) and using

the matrix Riemann problem method ([5]- [7]), we shall obtain asymptotic formulas for
X~J (pi) and, as a consequence, asymptotic formulas for coefficients of matrices At.

and A,.j at e j O:

[At,]j,j = eW4,e-w) + ~(E3); (13)

~z(pj, o) M(pl)e-iLp[
[Atr]j,[ N –E3-~owp(Pi,()) “ (elh,e _ ei%,.); (14)

/.4 – Pj

Wz(pj, o) ~(w) (eiw,,.+w>c) – 1).
[Are.f]j,l % -~3 .

~O~U(~l,O) “ P1 + Pj
(15)

Note that the formulas (13) – (15) are uniform on parameter L >>1. pay attention
also to the fact that the term of S3 order is absent in (13). The exact analysis shows

that in (13) 0(s3) = 0(e5).
Remark. If the systenzof several ice-floes with widths al,.. . ,a~ (m > 1) is con-

sidered, the transmission and reflection matrices for the whole system are obviously the

same as the product of transmission and reflection matrices of each ice-floe separately.
Hence, the diagonal elements of a transmission matrix for system with m ice-floes looks

like:
(16)

The given formula is uniform on m and L = k. ~ a,.
Sal

As follows from (14),(15), the elements of reflection matrix and also non-diagonal

elements of transmission matrix have the order 0(s3 ). The diagonal elements of [-k]j,j

have the order 0(1 ) and are of greatest interest:

{

[Atr]j,j w 1 if L – ,fl,~j,,gl C3 ~ 1, SEN;

[At~]j,j =–1 if L–=c3 <<1, SCN.
(17)

Thus, in the first case (particularly at Le3 << 1) the influence of the ice-floe to a
transmitted field is negligible, in second one (particularly at L N T/ l~j – PJ,. I) it is

maximal.
To obtain quantitative estimates we spent the numerical research of dependence of

the first “critical” size of the ice-floe a; = ~lPj:Y,,t,, when [AtT]j,j = —1, from frequency

and thickness of ice (here A is a wave length). Model of “liquid homogeneous layer

on liquid homogeneous half-space” with parameters H = 200 m, Ciig = 1500mps,

eo = 1 g/Sm3, ebd = 1.4 g/cm37 cb.t = 2000 reps, c1 = 3500 reps, C2 = 1800 reps,

p~~ = 0.9 g/cm3 was considered.
The results of calculations at thickness of ice d = 10 m are illustrated on fig. 1.
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Fig. 1. Dependence of the first “critical” size of ice–floe from frequency for various
modes.

The calculations show that in the shallow sea (H = 200 m) the first “critical” length

of the ice-floe a; is great (at frequency 40 Hz it equals N 15 — 200 kms depending on
mode number) and with increase of number j of surging mode a; is decreased.

The following group of calculations is devoted to investigation the influence of
absorption in ice on attenuation of an acoustic field. The absorption in ice is taken

into account as the small image additives i~l and i62 to nl and n2 accordingly (61 >

0, 62 > O). For quantitative estimates the same waveguide was chosen, with point
monochromatic source located on depth 100 m. As a measure of attenuation of sound

pressure on distance 1? from a source we consider the difference of average values
of fields (taken in Db) without the ice–floe (p.. ) and with it (p$j ), averaged by the

rectangle O~z~lY, l?-r<x ~l?+r(r ~2-5km, l?> a).
In calculation shown on fig. 2 the length of ice-floe varies from 1000 up to 5000 km;

the frequency ~ of a point source equals 11 Hz (two-moded waveguide), thickness of
ice d = 10 m and distance R = 5100 km. Here one can see a few calculations with
various 61 and 62 satisfying the equality d; + 6; = 0.052.
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Fig. 2. Dependence of field attenuation from ice-floe length,

In calculation shown on fig. 3 frequency varies; thickness of ice d = 10 m, distance

1? = 1100 km; coefficients of absorption al = 0.02, 6Z = 0.046 satisfy the equality
6? + 6; = 0.052 and the attenuation is maximum (bottom diagram). For comparison
similar calculation (top diagram) at absence of absorption in ice (61 = 62 = O) is given.
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Fig. 3. Dependence of attenuation of a field from frequency.

Hz

Here the conversion from one-mode tot we-mode waveguide (~ w 8.5 Hz) is clearly
seen. After this convection both curves begin to oscillate with amplitude * 3 – 8 Db,

and the bottom curve decreases with an average gradient N 2 Db on 1 Hz.
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