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This paper presents some results of a theoretical study of random impact vibrations of the
engine-mounting system of heavy-duty trucks. The dynamic model of a vehicle is reduced to
five degree-of-freedom system equipped with stoppers to limit the engine-body movement
when traveling on rough roads. The impact force is reduced to the linear restoring and damping
forces using by statistically equivalent coefficients of stiffness and damping. The responses of
the system to road surface undulations are determined from the moment equation. These
theoretical results are confirmed by the digital simulation.

1. Introduction
Recently, many successful improvements have been made

of heavy-dut y trucks. As an improvement for riding comfort,

in riding comfort and the strength
using an engine-body as dynamic

‘1’2)This application will decrease the beaming vibrationvibration absorber has become known .
of rudder frame arising from the tires run out at a certain vehicle velocity.

Heavy-duty trucks are featured with diversified wheel bases and bodies, resulting in
differences in body-frame vibration characteristics. In case of low frequency characteristics,
engine-mounting is set up with low stiffness for tuning with the engine body as the dynamic
vibration absorber. In this case, it is necessary to install stoppers to limit the engine-body
movement when traveling on rough roads. This paper deals with the strength problem of the
engine-mounting system which is often caused the impact force from the rough roads.

This study presents an approximate analysis of random impact vibrations of the engine-
mounting system. A closed form expression for moment equation can be obtained using the
equivalent linear model of impact force which is given by minimizing the mean-square error
between nonlinear and linear models. The influence of the stopper clearance on the impact force
and the responses of the vibration can be determined. The digital simulation confirms the
validity of these analytical results.



2. Nomenclature

A : Expanded matrix of (12 x 12)’s m2,m5: Sprung mass of front and rear
BYl?,: Column vector of (12 x 1)’s suspension

C2, C5: Damping coefficient of front and m3 : Engine-body mass
rear suspensions n : Index of deformation

c~: Damping coefficient of engine- : Probability densit y function of zi
mount ing S : Road surface roughness

CM: Damping coefficient of frame-body t: Time
Cq : Equivalent damping coefficient of V: Vehicle velocity

stopper WO: One side power spectral density of

d : Stopper clearance white noise

E[ ] : Expected value XO@ : Power spectral density of road

Fd : Impact force on stopper surface undulation

~C: Corner frequency of shaping filter
xi : Displacement (i = 1, 2,....,5)

kl, k4 : Stiffness of front and rear tires y : Relative displacement y = x, - x, )

kz, k5 : Stiffness of front and rear Zi : Random state variable (i = 1,2..12)

suspensions ~ : Stopper damping coefficient

k3 : Stiffness of engine mounting K : Stopper stiffness

kq : Equivalent stiffness of stopper a~~ : Standard deviation of F~

L : Time delay between front and rear qi, q, : Standard deviation of xi and y
suspension

ml, m4 : Unsprung mass of front and rear
suspension

3. Dynamic Model of Vehicle and Engine-mounting
3.1 Dynamic Model

The dynamic model of a vehicle and engine-mounting system with motion-limiting stops is
shown in Fig. 1. The engine-body m3 is tied on front sprung mass m2 with stoppers having
clearance d. The mass of engine body works as dynamic vibration absorber for a flexible frame-
body structure( m2,m5, kfi, CM). When the engine body vibrates under the action of impact force
on motion-stoppers, the equations of motion are expressed as follows:

mlil + c2(i1 – X2)+k,(~, -~o,)+k,(~l -X2)=0

mzxz + c2(i2 – il) - (cJ + Cls ~z – i5) + kz(xz –xl )-k3y+kM(~2-~,)=Fd

mzy + Cz(il – X2)+(l+m2/m,)cJ +cm(~, -~z) +k,(~, -x2)

(+ (1 + m2/m3)k3y + kx X5 – X2)= -(1+ m2/m3)F. ‘1)

m4i?4 + C5(X4 –x5)+k4(x4 –xM)+k5(x4 -X5)=0

m5i?5+ c5(i5 – i4 )+ CM(i5 -i2)+k5(x5 -x4) +kM(x5 -X2)=0

where F’~represents
contact, and y(= X3

mass m2.
The road surface

the transmitted impact force when either one of the stoppers receives a
– Xz) is the relative displacement between the engine body m3 and sprung

undulations XOIto the front tire and XWto the rear can be obtained by



applying a shaping titer to Gaussian white noise, i.e.

i,, + 2nfcxo, = 2nfcw@, iw + 2nfcxM = 2nfcu(t - L)qt -L) (2)

where U( ) denotes unit step function, ~Ccorner frequency of shaping filter, L time delay between
front tire and rear tire, and w(t) Gaussian white noise with its expected value zero. They are
expressed as follows:

1
L wb.—

v

(3)

E[w(t)] = o, E[w(t)+)] = Wob(t- T) (4)

where V represents vehicle velocity, l.,~wheel base and WOpower spectral density, 5( ) Dirac’s
delta function and E[ ] the expected value of [ ]’s.
3.2 Impact Model

In general, the impact force FJ takes the form of hysteresis loops as shown in Fig.2. This loop

appears when the relative displacement y(= XA- X2) exceeds the clearance *d, i.e. y > d.

The mathematical expression~3Jof the impact force for motion stoppers can be given by:

Fd = K(I + ~j)(y - d)”u(y - d) - K(I - ~y)(- y - d)nu(- y - d) (5)

where K denotes stopper stiffness and K~( &y – d ~ damping factor to determine an energy loss

on the cent act surface during impact. The index n describes the deformation law during impact
with its value from 1 to 1.5 to match the impact condition(s). In this study, index n is assumed
n=l.

4. Theoretical Analysis
4.1 Equivalent Linear System

The impact force F~ is expressed as a nonlinear function of relative
velocity y. We linearize the impact force , resulting in the equivalent linear

and the equivalent linear rest oring force keqy, i.e.

F&q= ceqY+ ‘eqY

displacement y and
damping force c~qy

(6)

By introducing state variables ZI = xl, Zz = Xz, ZJ = y, Zq = X4, z~ = X5, Zb = il, z, = iz,

‘8=j, z9=i4, z~~= x5, 211= iol and Zlz = i ~, equation (1) and (2) can be expressed in the

following expanded linear matrix form:

i(t) = Az(t) + Bf w(t) + ~rU(t - L)w(t - L) (7)

where z(f) = [zl, Z2, . .. ... . .. . Z12]T, A is the (12x 12)’s expanded matrix, llf and 11, the (12x 1)’s

column vector and [ ]~ denotes the transpose of [ ] ‘s.
4.2 Statistical Linearization of Impact Force



The values of c=~ and keq can statistically be determined by minimizing the

error of difference between impact force F~ and its equivalent impact force
stationary stochastic process, ce~ and ke. values are in general expressed as

responses(a, i.e.

E[F~zs] k E[%%]c‘q= )+] ‘ ‘q=E[z:]

mean-square

F~eq. In the
functions of

(8)

Assuming responses z~ and z~ as Gaussian probabilityy distribution with its expected value
zero, c=~and k=q values(4Jcan be obtained by integrating the terms E[F~z~] and E[F~ ZA]over

the ranges ( -~-@) and(--- –d : d - cc) as follows:

Ceq= 21@ -@[J’#+E%’[+q]
where @( ) denotes commutative distribution function, i.e.

‘@)=&cfmexp(-5dy

keg= 2K@

[)

-d

m

(9)
E Z:

(lo)

It can be seen from expression (9) that the equivalent damping coefficient and the stiffness
are functions of the stopper clearance d and the response E[z~2]. In a special case of stopper
clearance d = O, Ceq and k=, values are expressed in the reduced equations

ce9 = 2K~~m and keq = K. They approach zero as d ~ w.

4.3 Moment Equation
The general solution of equation (7) is expressed as follows:

z(~) = exp(A~)z(o) +1 exp[A(~ – T)]Bf ~(~)d~ + ~exp[A(t-T)~,u(.-L)~T-L)dT (11)

In the stationary process, the derivative of second-order moment lf(t)(= E[z(t)zT(t)])is

zero, i.e.

M(t) = E[z(t)z’(t)]+E[z(t)zT(t)]=O (12)

In case of t>> L , Substituting equation (12) for equation (7), (11) and considering equation
(4) derives the following moment equation.

AM+ MAT = -{BfBf + Brl?f + B, Bf[exp(AL)]T + exp(AL)lJf B~}WO (13)



where A contains the equivalent damping coefficient c~~and stiffness keq defined by equation

(9). This gives a set of nonlinear equations for responses E[zi Zj] in terms of second-order
moment . Each moment can be obtained by solving equation (13).
4.4 Impact Force

The statistics of impact force F~ for inputs with Gaussian probability distribution will now be
obtained. Using the same approach as was used for the evaluation of c=~ and keq, the mean-

square value E[F~ 2] of impact force can be given by:

I [Ja~’e+[,d’14)
E[F;] = 2K’(1+ P2E[Z:])(d’+E[z@

This response quantity can be calculated by substituting equation (14) for the values of E[z$]
and E[zjz] obtained from equation (13).

5. Analytical Results

Standard deviations CJX2‘m> ‘Y ‘~> ‘F. ‘~andotherresponsescan
be expressed in terms of the system responses J5[ziZj] obtained from equation (13). Newton-
Laphson is applied to solve this nonlinear equation.

To confirm the analytical results, the numerical simulation for the system equation (1) was
conduct ed using Runge-Kutt a-Gill. The white noise with Gaussian probabilityy distribution is
created with Box-Muller.
5.1 Numerical Model

To obtain the numerical data, the case of a 25 ton heavy-duty truck model with the following
set of parameters will be considered as an example.

ml = 600(kg), kl

Cz= 4.96(kNslm),

kfi = 6,800(kN/m),

Heavv-dutv-truck and stomer model

= 3,430(kN/m), m,= 4,450(kg), k,= 667(kNlm)

mq = l,250(kg), k~= 5,440(kN/m), CS= 3.3(kNdm)

CZ = 0.618(kNs/m), mb = 2,000(kg), k,= 13,700(kNs/m)

m~= 16,700(kg), k~= 5,880(kNlm), C5= lg.s(~slm), 1.,,= 6(m)

K = 100,000(kN/m), ~ = 0.9(s/m), d = 5, 10, 15 (mm)

Fig.3(a) shows frequency characteristics of the front sprung mass acceleration, when the
front tire is exited with the sinusoidal wave of its amplitude d(m) for the dynamic model as

shown in Fig. 1. An experimental result is shown in Fig. 3(b), which obtained by exiting the
vehicle using an elector-hydraulic shaker with the same condition as Fig.3(a). Sprung resonance
appears around 2(Hz) followed by frame beaming resonance around 7 (Hz) and unsprung
resonance around 13 (Hz). The two graphs are almost identical.
5.2 Random Responses

When a vehicle is traveling at velocity V, the power spectral density XO(f)of inputs XOIand Xw
from the road surface undulation is generally expressed as follows(c):



where S represents the intensities of the road surface roughness, i.e.

X,(f) =(2nf)-2SV x 10-’ (m’/Hz) (15)

S = 2-8(ms/c) : Very good, S = 8-32(m3\c) : Good, S = 32-128(m3/c) : Average

S = 128-512(ms/c) : Poor, S = 512-2048(ms/c): Very poor

The desired input X, (j) can be obtained by applying a shaping filter defined as equation (2) to

the white noise with its one side power spectral density W,= XO(~C).

Fig.4 shows power spectral densities of the road surface undulation when the vehicle velocity
is 50(lGn / hr) and the corner frequency ~c= O.l(llz) which is set at small value compared with
that of vehicle dynamics so that it won’t affect responses. The solid thin line shows the power
spectral density generated by applying the shaping titer to the white noise. The solid thick line
represents the general expression (15). These densities are almost the same.

An example of the impact vibrations obtained by the digital simulation is depicted in Fig.5.
Fig.5(a) shows the wave form of the relative displacement y and Fig.5(b) the impact force F’d..
It can be observed that the relative displacement is closely bound within the selected stopper
clearance (=10 mm) and the impact force is created at the time of impact. The hysteresis loops
of the displacement on Fig.5(a) and the force on Fig.5(b) are shown in Fig.5(c). It can be noted
that the loops are kept within some boundary and show a stable energy dissipation by the
impact motions.

Fig.6(a) shows the standard deviation UY of the relative displacement y as a function of the

road surface roughness S using stopper clearance d as a parameter. The plain solid line
represents the result obtained with the theoretical method and the solid line with circles the
result by digital simulation. They are relatively in good agreement. It is noted that the motion
limiting can be observed over S= 20(m31c) (= “Good”) for the clearance d=5(mm), and
S= 200(m’\c) ( = “Poor”) for the clearance d=15(mm).

The standard deviation o~~ of the impact force is shown in Fig.6(b). It is noted that the

impact force increases as the road surface roughness S rises. The theoretical result is in good
agreement with that of simulation in higher road surface roughness. They do not very much
coincide in smaller roughness. This is because of the infrequent impacts on stoppers in smaller
road surface roughness. Small impact forces, however, are not important factor for the strength

problem of the engine-mounting system. In case of “Very poor” (S=512-2,084(m3/c)), very

large impact forces are generated. The influence of the stopper clearance d is very little in this
case. The two graphs provide useful data to estimate the strength problem of a engine-
mounting system with motion-limiting stops in given road surface undulations. They indicate
how much strength and stopper clearance need for the engine-mounting system.

As a typical example of other responses, the standard deviation or, of the front sprung mass

is shown in Fig.6(c). The theoretical result is in good agreement with that of digital simulation.
It can be seen that the front sprung mass response is insensitive to stopper clearance.

Fig.7(a) and Fig.7(b) show how the equivalent stiffness k=, and the equivalent damping

coefficient c<~vary depending on the road surface roughness. They increase as the road surface
roughness rises. It can be observed that they consist of two different lines, infrequent impact

and frequent impact, and become to ke ~ = K and ce~ =2KpJ*as s+~.



6. Conclusions
With this study, we proposed an approximate solution to the response of the engine-

mounting system with motion-limiting stops for heavy-duty trucks when the stationary random
inputs are applied to the vehicles. In order to calculate the response characteristics, we
developed a mathematical model with the five degree-of-freedom system featuring nonlinearity
in relative displacement and velocity between the engine body and the front sprung mass.

The moment equation for two random inputs with time delay has derived. The standard
deviation of impact forces, relative displacements of front sprung and engine body masses have
also been obtained theoretically and numerically. The results of digital simulation confirmed the
theoretical results.

The impact force, the influence of the stopper clearance and other responses for given road
surface roughness have been discussed in detail. This eventually led us to perform a successful
estimation of the impact forces required when designing the engine-mounting system with
motion-limiting stops for heavy-duty trucks.
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Fig.1 Dynamic model of vehicle with
engine mounting with stopper.

‘$

Fig.2 Force vs displacement
characteristics of a typical impact.
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Fig.3 Frequency characteristics of dynamic model and experiment when front tire excited.

10000 I
1000
100
10
1

0.1
0.01

0.001
0.0001

0.000o1 ~
0.1 1 10 100 1000

f (Hz)

Fig.4 Power spectral density of road surface undulation.

o 1 23 4

time (s) 5 ~’:=

(a) Relative displacement y vs time.

g

400
200 ‘41_!l_l

o -30 0 30

i’
-200
-400

y fnm )

01 2345 (c)Impact force F, vs relative
time (s) displacement.

(b) Impact force Fd vs time.

Fig.5 Relative displacement and impact force in digital simulation (d=10 nun).
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Fig.6 Standard deviation of response vs road surface roughness.
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Fig.7 Equivalent linear stiffness and damping coefficient vs road surface roughness.


