FIFTH INTERNATIONAL CONGRESS ON SOUND AND VIBRATION
DECEMBER 15-18, 1997
ADELAIDE, SOUTH AUSTRALIA

Updating of Non-conservative Structure Via Inverse Methods with Parameter Subset Selection

Ladislav Starek*, Daniel J.Inman**, Milos Musil*
*Faculty of Mechanical Engineering, Slovak Technical University, Bratislava, Slovakia
**Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA

Abstract

The paper deals with the improvement of the updating method proposed in [4], for the case of incomplete modal and spectral data with incomplete eigenvector. Missing modal data is given by some of expansion methods. The parameter subset selection is proposed as an improvement of updating method via inverse problem.

1. Introduction

The discipline and practice of finite element modeling (FEM) of structures has become a sophisticated technology. The techniques of experimental modal analysis (EMA) have developed into a formal and well developed technology. Both these disciplines imply specific rules and structure to be used to develop a model. Both claim great successes in their ability to provide consistent and useful models. In principal, of course, the analytical model should be consistent with, or predict, the results obtained from vibration tests. However, this rarely happens. As a result, the finite element model must often be adjusted or modified, until it agrees with the test data.

The approach proposed here is to use the results of inverse eigenvalue problems to develop methods for correcting models.

2. Mathematical Models

Consider a linear lumped parameter system which can be modelled by a differential equation of the form

$$
\begin{equation*}
\mathbf{M} \ddot{\mathbf{v}}(t)+\mathbf{D} \dot{\mathbf{v}}(t)+\mathbf{K v}(t)=\mathbf{f}(t) \tag{1.1}
\end{equation*}
$$

where $\mathbf{v}(t)$ is an n vector of time-varying elements representing the displacement of the masses. The matrix coefficients \mathbf{M}, \mathbf{D} and \mathbf{K} are $N x N$ symmetric matrix of constant real elements representing the mass, damping and stiffness coefficients of the system, respectively. The mass matrix \mathbf{M} is taken to be positive definite.

The first order $2 N$ space form is

$$
\begin{equation*}
\mathbf{N} \dot{\mathbf{u}}(\mathrm{t})-\mathbf{P} \mathbf{u}(\mathrm{t})=\mathbf{g}(t) \tag{1.2}
\end{equation*}
$$

where the vector $\mathbf{u}(\mathrm{t})=\left[\begin{array}{l}\mathbf{v}(t) \\ \dot{\mathbf{v}}(t)\end{array}\right], \mathbf{g}(t)=\left[\begin{array}{l}\mathbf{f}(t) \\ \mathbf{0}\end{array}\right]$
and the matrices \mathbf{P} and \mathbf{N} are defined by the partitioned form

$$
P=\left[\begin{array}{cc}
-\mathbf{K} & \mathbf{0} \tag{1.3}\\
\mathbf{0} & \mathbf{M}
\end{array}\right], N=\left[\begin{array}{cc}
\mathbf{D} & \mathbf{M} \\
\mathbf{M} & \mathbf{0}
\end{array}\right],
$$

The standard state space formulation

$$
\begin{equation*}
\dot{\mathbf{x}}(\mathrm{t})-\mathbf{A} \mathbf{x}(\mathrm{t})=\mathbf{h}(t), \tag{1.4}
\end{equation*}
$$

where the state vector $\mathbf{x}(\mathrm{t})=\mathbf{u}(\mathrm{t}), \mathbf{h}(\mathrm{t})=\mathbf{N}^{-1} \mathbf{g}(\mathrm{t})$, and the state matrix \boldsymbol{A} is given by

$$
\boldsymbol{A}=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{I} \tag{1.5}\\
-\mathbf{M}^{-1} \mathbf{K} & -\mathbf{M}^{-1} \mathbf{D}
\end{array}\right],
$$

Next consider solution of Eqs. (1.1), (1.2), and (1.4) of the form $\mathbf{v}(\mathrm{t})=\mathbf{v} \mathrm{e}^{\mathrm{st}}, \mathbf{u}(\mathrm{t})=\mathbf{u} \mathrm{e}^{\mathrm{st}}$, and $\mathbf{x}(\mathrm{t})=\mathbf{x} \mathrm{e}^{\text {st }}$, respectively, for the homogeneous case $f(\mathrm{t})=\mathbf{g}(\mathrm{t})=\mathbf{h}(\mathrm{t})=\mathbf{0}$.

Each of these "eigenvalue"problems in $\mathbf{v}_{i}, \mathbf{u}_{i}$, and \mathbf{x}_{i} can be restarted as a matrix equation by defining the matrix Λ to be the $2 N x 2 N$ diagonal matrix of eigenvalues λ. In addition if the $N x 2 N$ matrix \mathbf{V} is defined by taking the $2 N, N x I$ vectors \mathbf{v}_{i} as its columns, if the $2 N x 2 N$ matrix \mathbf{U} is defining by taking $2 N, 2 N x I$ vectors \mathbf{u}_{i} as its columns.

From the Eq. (1.3), (1.5) and orthogonality conditions after some manipulation follows [4]:

$$
\begin{gather*}
\mathbf{M}=\left(\mathbf{V} \Lambda \mathbf{W}^{\mathrm{T}}\right)^{-1}, \tag{1.6}\\
\mathbf{D}=-\mathbf{M}\left(\mathbf{V} \Lambda^{2} \mathbf{W}^{\mathrm{T}}\right) \mathbf{M} \tag{1.7}\\
\mathbf{K}=-\mathbf{M}\left(\mathbf{V} \Lambda^{2} \mathbf{W}^{\mathrm{T}}\right) \mathbf{D}+\mathbf{M}\left(\mathbf{V} \Lambda^{3} \mathbf{W}^{\mathrm{T}}\right) \mathbf{M}, \tag{1.8}
\end{gather*}
$$

with modal condition

$$
\begin{equation*}
\mathbf{0}=\mathbf{V} \mathbf{w}^{\mathrm{T}} \tag{1.9}
\end{equation*}
$$

The relation among the matrix coefficients \mathbf{M}, \mathbf{D}, and \mathbf{K} and design parameters and the element matrices can be expressed follows

$$
\begin{equation*}
\mathbf{K}=\sum_{j=l}^{N k} \mathrm{k}_{\mathrm{j}} \mathbf{K}_{\mathrm{e},}, \quad \mathbf{D}=\sum_{j=1}^{N d} \mathrm{~d}_{\mathrm{j}} \mathbf{D}_{\mathrm{ej}}, \quad \mathbf{M}=\sum_{j=l}^{N m} \mathrm{~m}_{\mathrm{j}} \mathbf{M}_{\mathrm{e}}, \tag{1.10}
\end{equation*}
$$

where k_{j}, d_{j}, m_{j} are the design parameters amount of which is N_{k}, N_{d}, and $N m$, and the element matrices $\mathbf{K}_{\mathrm{ej}}, \mathbf{D}_{\mathrm{ej}}, \mathbf{M}_{\mathrm{ej}}$ are known.

2. Systems with Proportional Damping

For the case of symmetric coefficient matrices $\mathbf{K}, \mathbf{D}, \mathbf{M}$ and system of simple structure ($\Lambda=\boldsymbol{S}=\Lambda^{\mathrm{T}}$) from eigenvalue problem follows that $\mathbf{W}=\mathbf{V}$.

In the case of proportional damping where the damping matrix is of the form

$$
\begin{equation*}
\mathbf{D}=\alpha \mathbf{M}+\beta \mathbf{K} \tag{2.1}
\end{equation*}
$$

there exists such real matrix V_{o}, for which is valid

$$
\begin{array}{lll}
\boldsymbol{V}_{0}^{T} \boldsymbol{K} \boldsymbol{V}_{0}=\Omega_{0}^{2}, \quad \boldsymbol{V}_{0}^{T} \boldsymbol{D} \boldsymbol{V}_{0}=2 \Delta, \quad \boldsymbol{V}_{0}^{T} \boldsymbol{M} \boldsymbol{V}_{0}=\boldsymbol{I}, \\
\boldsymbol{V}=\boldsymbol{V}_{0}[\boldsymbol{C}, \overline{\boldsymbol{C}}], \tag{2.5}
\end{array}
$$

where the matrices $\Omega_{0}{ }^{2}$ and 2Δ are diagonal matrices of squared undamped natural frequencies $\omega_{j}{ }^{2}$ and damping ratios $2 \zeta_{j}$.

By comparison of (2.1)-(2.4) and an orthogonality condition it follows:

$$
\begin{equation*}
\Omega_{0}^{2}=S_{s} \bar{S}_{s}, \quad 2 \Delta=-\left(S_{s}+\bar{S}_{s}\right), \quad V_{0}=2 V_{s R}\left(S_{s J}\right)^{-0,5}, \quad V_{s R}=-V_{s I} \tag{2.6}
\end{equation*}
$$

where in the underdamped case
$\boldsymbol{S}=\operatorname{diag}\left(\left[\boldsymbol{S}_{s} \bar{S}_{s}\right]\right), \quad \boldsymbol{S}_{s}=\boldsymbol{S}_{s R}+i \boldsymbol{S}_{s l}, \quad V=\left[V_{s} \bar{V}_{s}\right], \quad V_{s}=V_{s R}+i V_{s I}$.

3. Complete Modal and Spectral Data Case

For known modal and spectral data \mathbf{V}, \mathbf{W}, and Λ the matrix coefficients \mathbf{M}, \mathbf{D}, and \mathbf{K} are given by Eqs.(1.6), (1.7), and (1.8). Then by using relations in Eq.(1.10) for known element matrices $\mathbf{M}_{\mathrm{cj}}, \mathbf{D}_{\mathrm{ej}}$, and \mathbf{K}_{ej} we yield the design parameters m_{l}, d_{j}, and k_{j} of the system.

By using (1.10), entries in the matrices \mathbf{M}, \mathbf{D}, and \mathbf{K} are given by linear combination of the design parameters as follows

$$
\begin{equation*}
\mathbf{A}_{\mathrm{KI}}\left\{\mathbf{k}_{1}\right\}=\mathbf{b}_{\mathrm{KI}}, \quad \mathbf{A}_{\mathrm{DI}}\left\{\mathrm{~d}_{1}\right\}=\mathbf{b}_{\mathrm{DI}}, \quad \mathbf{A}_{\mathrm{MI}}\left\{\mathrm{~m}_{1}\right\}=\mathbf{b}_{\mathrm{MI}} \tag{3.1}
\end{equation*}
$$

where $\mathbf{A}_{\mathrm{KI}}, \mathbf{A}_{\mathrm{DI}}, \mathbf{A}_{\mathrm{MI}}$ to be $\left(N^{2}, N k\right),\left(N^{2}, N d\right)$, and $\left(N^{2}, N m\right)$ matrices, and $\mathbf{b}_{\mathrm{KI}}, \mathbf{b}_{\mathrm{DI}}, b_{M I}$ to be $\left(N^{2}, l\right)$ vectors. For j, k entry of the matrices $\mathbf{K}, \mathbf{D}, \mathbf{M}$ and j, k entry of the matrices \mathbf{K}_{e}, $\mathbf{D}_{\mathrm{el}}, \mathbf{M}_{\mathrm{el}}$ is valid

$$
\begin{align*}
& K_{j, k}=b_{K J_{J+N(k-1)}}, \quad D_{j, k}=b_{D I_{J+N(k-1)}}, \quad M_{j, k}=b_{M I_{J+N(k-l)}}, \tag{3.2}\\
& K_{e l} j_{j, k}=A_{K I_{J+N(k-1, l, l}}, \quad D_{e l_{J, k}}=A_{D I_{j+N(k-1), l}}, \quad M_{e l} l_{j, k}=A_{M I_{J+N(k-1), l}} . \tag{3.3}
\end{align*}
$$

In the case, that is valid : $N k, N d, N m \leq n_{b K}, n_{b D}, n_{b M}$,
where $n_{b K}, n_{b D}, n_{b M}$, are nonzero rows of the matrices $\mathbf{A}_{\mathrm{KI}}, \mathbf{A}_{\mathrm{DI}}, \mathbf{A}_{\mathrm{MI}}$ it is possible to determine the design parameters k_{j}, b_{j}, m_{j} by using Eq. (3.1)

Let us have the analytical model given by the coefficient matrices $\mathbf{M}_{\mathbf{a}}, \mathbf{D}_{\mathrm{a}}$, and \mathbf{K}_{a} with in advance given structure (some entries are zeros). For this model the modal and spectral data are representing by matrices $\mathbf{V}_{\mathrm{a}}, \mathbf{W}_{\mathrm{a}}$, and Λ_{a}. Let the experimental spectral and modal data are given by the matrices $\mathbf{V}_{\mathrm{e}}, \mathbf{W}_{\mathrm{e}}$, and Λ_{e}. By using Eqs.(1.6)-(1.9) we yield the experimental coefficient matrices $\mathbf{M}_{e}, \mathbf{D}_{e}$, and \mathbf{K}_{e} which will have different structure as analytical. Then the design parameters determined from $\mathbf{M}_{e}, \mathbf{D}_{e}$, and $\mathbf{K}_{\boldsymbol{e}}$ by using Eq.(3.1) will create coefficient matrices $\mathbf{M}_{u}, \mathbf{D}_{\mathrm{u}}$, and \mathbf{K}_{u} which will be different from both analytical $\mathbf{M}_{\mathrm{a}}, \mathbf{D}_{\mathrm{a}}$, and \mathbf{K}_{a} and experimental. $\mathbf{M}_{e}, \mathbf{D}_{\mathrm{e}}$, and \mathbf{K}_{c}. Structures of matrices $\mathbf{M}_{\mathrm{u}}, \mathbf{D}_{\mathrm{u}}$, and \mathbf{K}_{u} and matrices $\mathbf{M}_{\mathrm{a}}, \mathbf{D}_{\mathrm{a}}$, and \mathbf{K}_{a} will be the same. Nonzero entries of matrices $\mathbf{M}_{\mathrm{u}}, \mathbf{D}_{\mathrm{u}}$, and \mathbf{K}_{u} and nonzero entries of matrices $\mathbf{M}_{e}, \mathbf{D}_{\mathrm{e}}$, and \mathbf{K}_{e} will be the same ($N k, N d, N m=n_{b K}, n_{b D}$,
$n_{b M}$), or will be different in the sense of minimum of Euclid norm ($N k, N d, N m=n_{b K}, n_{b D}$, $n_{b M}$).

Example 1

Let the coefficient matrices of the analytical system with proportional damping are

$$
\begin{aligned}
\mathbf{M}_{\mathrm{a}} & =\operatorname{diag}\left(\left[\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}, \mathrm{~m}_{4}, \mathrm{~m}_{5}\right]\right), \\
\mathbf{K}_{\mathrm{a}} & =\left[\begin{array}{ccccc}
\mathrm{k}_{1}+\mathrm{k}_{2} & -\mathrm{k}_{2} & 0 & 0 & 0 \\
-\mathrm{k}_{2} & \mathrm{k}_{2}+\mathrm{k}_{3}+\mathrm{k}_{6} & -\mathrm{k}_{3} & 0 & -\mathrm{k}_{6} \\
0 & -\mathrm{k}_{3} & \mathrm{k}_{3}+\mathrm{k}_{4} & -\mathrm{k}_{4} & 0 \\
0 & 0 & -\mathrm{k}_{4} & \mathrm{k}_{4}+\mathrm{k}_{5} & 0 \\
0 & -\mathrm{k}_{6} & 0 & 0 & \mathrm{k}_{6}
\end{array}\right],
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{aj}}=1.0 \mathrm{e}+003[1.6,30,1.2,25,1.5,1.0] \\
& \mathrm{m}_{\mathrm{aj}}=[0.5,5.5,5.5,0.8,3.0] .
\end{aligned}
$$

and

$$
\mathbf{D}_{\mathrm{a}}=\alpha \mathbf{M}+\beta \mathbf{K}
$$

where $\alpha_{\mathrm{a}}=0.01, \beta_{\mathrm{a}}=0.0001$
Let us simulate errors in some design parameters and than build coefficient matrices $\mathbf{M}_{\mathrm{r}}, \mathbf{D}_{\mathrm{r}}$, and \mathbf{K}_{r}, where

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{rj}}=1.0 \mathrm{e}+003[1.84,25.5,1.056,29,1.68,1.14] \\
& \mathrm{m}_{\mathrm{rj}}=[0.57,4.95,5.94,0.76,3.3]
\end{aligned}
$$

and

$$
\alpha_{\mathrm{r}}=0.011, \beta_{\mathrm{r}}=0.0001
$$

This system will be represented by modal and spectral matrices $\mathbf{V}_{\mathrm{r}}, \mathbf{W}_{\mathrm{r}}$, and Λ_{r} or $\mathrm{V}_{0 \mathrm{r}}$ and S_{r}. By using Eqs.(1.6), (1.7), and (1.8), or (2.2)-(2.4) we compute the effective design parameters with errors.

Let us define some error matrices $\mathbf{e V}_{\mathbf{0}}=\mathbf{e} \mathbf{W}_{\mathbf{0}}$, $\mathbf{e S}$ representing a noise in measurement and multiply every entry of the error matrices with corresponding entry of effective modal and spectral ones. These will represent experimental modal and spectral data $\mathbf{V}_{0_{e}}=\mathbf{V}_{\mathbf{0}_{\mathbf{r}}} \mathrm{eV}_{0}$ and $\mathbf{S}_{\mathrm{e}}=\mathbf{S}_{\mathrm{r}} \mathrm{eS}$

By using Eqs. (2.2) - (2.4) we yield the experimental coefficient matrices K_{e}, \mathbf{M}_{e} and $\alpha_{\mathrm{e}}=0.009, \beta_{\mathrm{e}}=0.0001$
From (3.1) - (3.2) we yield the new design parameters

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{uj}}=1.0 \mathrm{e}+004[0.2686,2.3665,0.1397,3.0793,0.0951,0.0959] \\
& \mathrm{m}_{\mathrm{uj}}=[0.5308,4.8068,6.2764,0.7737,3.5202]
\end{aligned}
$$

Comparison of analytical, effective and updated design parameters is given in the next table

k_{aj}	1.6	30	1.2	25	1.5	1.0
k_{rj}	1.84	25.5	1.056	29	1.68	1.14
k_{uj}	2.686	23.665	1.397	30.793	0.951	0.959

m_{aj}	0.5	5.5	5.5	0.8	3.0
$\mathrm{~m}_{\mathrm{rj}}$	0.57	4.95	5.94	0.76	3.3
$\mathrm{~m}_{\mathrm{uj}}$	0.5308	4.8068	6.2764	0.7737	3.5202

$\alpha_{\mathrm{a}}=0.01, \beta_{\mathrm{a}}=0.0001, \alpha_{\mathrm{r}}=0.011, \beta_{\mathrm{r}}=0.0001, \alpha_{\mathrm{e}}=0.009, \beta_{\mathrm{e}}=0.0001$

4. Incomplete Modal and Spectral Data with Complete Eigenvector Case

In the case in which for modal and spectral matrices $\boldsymbol{V}, \boldsymbol{S}$ there are known only m eigenvectors and m eigenvalues (modal matrix \boldsymbol{V}_{N} of dimension $(N, 2 m)$ and spectral matrix S_{m} of dimension ($2 m, 2 m$)) for finding of design parameters k_{j}, m_{j}, α and β can be used equations (2.1)-(2.4) in the form

$$
\begin{equation*}
\boldsymbol{V}_{O N}^{T} \boldsymbol{K} \boldsymbol{V}_{O N}=\boldsymbol{\Omega}_{O m^{2}}^{2}, \boldsymbol{V}_{O N}^{T} \boldsymbol{D} \boldsymbol{V}_{O N}=2 \Delta_{m}, \quad \boldsymbol{V}_{O N}^{T} \boldsymbol{M} V_{O N}=\boldsymbol{I}_{\boldsymbol{m}} \tag{4.1}
\end{equation*}
$$

where the matrices $\Omega_{0 m^{2}}{ }^{2}, 2 \Delta_{m}$, dimension of (m, m), are given by (2.6)-(2.7) and the matrix $V_{O N}$ is given by (2.5) and (2.8).

By using (1.10), entire elements of multiplication in equations (4.1) and (4.3) can be given as linear combination of design parameters as follows

$$
\begin{equation*}
\boldsymbol{A}_{K o}\left\{\boldsymbol{k}_{l}\right\}=\boldsymbol{b}_{K o}, \quad \boldsymbol{A}_{M o}\left\{m_{b}\right\}=\boldsymbol{b}_{M o} \tag{4.4}
\end{equation*}
$$

where, $\boldsymbol{A}_{K o}, \boldsymbol{A}_{M o}$, to be $\left(m^{2}, N k\right),\left(m^{2}, N m\right)$ matrices and $\boldsymbol{b}_{K o}, \boldsymbol{b}_{M o}$ are ($m^{2}, 1$) vectors. For j, k entry of matrices $\Omega_{0 m}{ }^{2}, I_{m}$, and j, k entry of matrices

$$
\boldsymbol{K} o_{l}=\boldsymbol{V}_{O N}^{T} \boldsymbol{K e}_{l} \boldsymbol{V}_{0 N}, \quad \boldsymbol{M} o_{l}=\boldsymbol{V}_{O N}{ }^{T} \boldsymbol{M} \boldsymbol{e}_{l} \boldsymbol{V}_{0 N}
$$

is valid:

$$
\begin{array}{ll}
\Omega_{0 m}{ }^{2}{ }_{j, k}=b_{K o_{j+m(k-1)}}, & I_{j_{j, k}}=b_{M o_{j+m(k-1)}} . \\
K o_{l_{j, k}}=A_{K o_{j+m(k-1), l}}, & M o_{l_{j, k}}=A_{M o_{j+m(k-l), l}} .
\end{array}
$$

In the case that is valid : $\quad N k \leq n_{o}, N m \leq n_{o}$,
where $n_{o}=m(m+1) / 2$, it is possible to determine the design parameters k_{j}, m_{j} (number of which is $N k, N m$) by using equations (4.4)-(4.5) .

From comparison of equations (2.1) and (4.2) it follows:

$$
\boldsymbol{A}_{a b}\left[\begin{array}{c}
\alpha \tag{4.13}\\
\beta
\end{array}\right]=\boldsymbol{b}_{a b},
$$

where, $\boldsymbol{A}_{a b}$ is dimension of $(m, 2), \boldsymbol{b}_{a b}$ is dimension of (m, I) and it is valid :

$$
b_{\alpha \beta_{j}}=2 d_{j}, \quad A_{\alpha \beta_{j, 1}}=1, \quad A_{\alpha \beta_{j, 2}}=\omega_{0 j}^{2}
$$

By solution of the equation (4.13) for the case $2 \leq m$, are given the design parameters α and β.

5. Case of Incomplete Modal and Spectral Data with Incomplete Eigenvector

Matrices V_{N} and $V_{O N}$ can be given as follows:

$$
\boldsymbol{V}_{N}=\left[\begin{array}{l}
\mathbf{V}_{r} \tag{5.1}\\
\mathbf{V}_{o}
\end{array}\right], \boldsymbol{V}_{0 N}=\left[\begin{array}{l}
\mathbf{V}_{0 r} \\
\mathbf{V}_{00}
\end{array}\right]=\boldsymbol{T} \boldsymbol{V}_{0 r}
$$

where $\boldsymbol{V}_{r}, \boldsymbol{V}_{o}, \boldsymbol{V}_{0 r}, \boldsymbol{V}_{0 o}$, are $(n, 2 m),(N-n, 2 m),(n, m),(N-n, m)$ matrices. From equations (2.5) a (2.8) follows:

$$
\begin{equation*}
V_{r}=V_{0 r}\left[C_{m}, \bar{C}_{m}\right] \tag{5.3}
\end{equation*}
$$

where $C_{m}=\left(2 i S_{s I m}\right)^{-1 / 2}$.
For known matrices $\boldsymbol{V}_{r}, \boldsymbol{S}_{\boldsymbol{m}}, \boldsymbol{T}$ by using (5.1)-(5.2), (4.4)-(4.5) and (4.13) design parameters k_{j}, m_{j} (number of which is $N k, N m$), α and β can be computed.

Matrix \boldsymbol{T} can be given as follows:

$$
\boldsymbol{T}=\left[\begin{array}{c}
\mathbf{I} \tag{5.4}\\
\mathbf{V}_{00} \\
\mathbf{V}_{0 r}{ }^{+}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{I} \\
\mathbf{T}_{s}
\end{array}\right] .
$$

For determining design parameters k_{j}, m_{j}, α and β for the case of unknown matrix $V_{0 o}$ it is necessary to estimate the matrix \boldsymbol{T}. Two methods (Expansion using analytical modes and Physical expansion) of determining of the matrix \boldsymbol{T} or matrix $\boldsymbol{V}_{0 o}$ are described in [2].

6. Parameter Subset Selection

Solving equations (4.4)-(4.5) with the full design parameter set sometimes leads to meaningless results due to the bad condition of the coefficient matrix A . Thus the problem of the parameter subset selection is essential for the whole procedure.

Numeric significant rank of matrices A_{K}, A_{M} is less than the number of determining design parameters N_{k}, N_{m}.

Singular value decomposition of matrices $\boldsymbol{A}_{K}, \boldsymbol{A}_{M}$ is given by:

$$
\begin{equation*}
\left(\boldsymbol{A}=\boldsymbol{U} \Sigma V^{T}\right)_{K, M} \tag{6.1}
\end{equation*}
$$

where $U_{K, M}, V_{K, M}$ are the $\left(m^{2}, m^{2}\right),\left(N_{k, m} N_{k, m}\right)$, orthonormal matrices and $\Sigma_{K, M}$ is diagonal and real matrix containing the singular values $\sigma_{j}, j=1,2, \ldots, N_{k, m}$, of the matrix A. From sudden decrease singular values ($\sigma_{j} \gg \sigma_{j+1}$), can be indicated significant numeric rank of matrices $\boldsymbol{A}_{K}, \boldsymbol{A}_{M}$ and simultanuelosly the number of dominant design parameters $N_{k}{ }^{\prime}, N_{m}{ }^{\prime}$.

The selection of dominant design parameters $k_{j}^{\prime}, m_{j}^{\prime}$ can be found by means of the $\mathrm{Q}-\mathrm{R}$ decomposition [3] of matrices $\boldsymbol{A}_{K}, \boldsymbol{A}_{M}$,

$$
\begin{equation*}
(\boldsymbol{A} \Pi=\boldsymbol{Q} \boldsymbol{R})_{K, M}, \tag{6.3}
\end{equation*}
$$

where $\boldsymbol{Q}_{K, M}$ are $\left(m^{2}, m^{2}\right.$) orthonormal matrices and $\boldsymbol{R}_{K, M}$, are ($m^{2}, N_{k, m}$) upper triangular matrices. The $\left(N_{k, m} N_{k, m}\right)$ permutation matrices $\Pi_{K, M}$ contain only unit vectors as columns and describes the interchange of columns of $\boldsymbol{A}_{K}, \boldsymbol{A}_{M}$ in such a way, that diagonal entries of matrices $\boldsymbol{R}_{K, M}$ are in ascending order (in order of optimal linear independent columns). After having performed the Q-R decomposition the solution of Least Squares problem (4.4)-(4.5) can be easily obtained by backward substitution:

$$
\begin{equation*}
\left(\boldsymbol{R} \Pi^{T} \boldsymbol{x}=\boldsymbol{Q}^{T} \boldsymbol{b}\right)_{K, M}, \tag{6.5}
\end{equation*}
$$

where $\left(\boldsymbol{R}=\left[\begin{array}{cc}\boldsymbol{A}_{11} & \boldsymbol{A}_{l 2} \\ \boldsymbol{0} & \boldsymbol{A}_{22}\end{array}\right)_{K, M}, \quad\left(\boldsymbol{Q}^{T} \boldsymbol{b}=\left[\begin{array}{l}\boldsymbol{b}_{1} \\ \boldsymbol{b}_{2}\end{array}\right)_{K, M}, \quad\left(\Pi^{T} \boldsymbol{x}=\left[\begin{array}{l}\boldsymbol{x}_{1} \\ \boldsymbol{x}_{2}\end{array}\right)_{K, M}\right.\right.\right.$,
where ($\left.\boldsymbol{A}_{11}, \boldsymbol{A}_{12}, \boldsymbol{A}_{22}\right)_{K, M}$ are of dimension ($N_{k^{\prime}, m^{\prime}, N_{k}, m^{\prime}}$), $\left(N_{k}{ }^{\prime}, m^{\prime}, N_{k, m^{-}} N_{k}{ }^{\prime},{ }^{\prime}\right),\left(m^{2}-\right.$ $\left.N_{k}{ }^{\prime},{ }^{\prime}, N_{k, m}-N_{k}{ }^{\prime}, m^{\prime}\right)$ and $\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{2}\right)_{K, M}$ are of dimension $\left(N_{k}{ }^{\prime}, m, I\right),\left(m^{2}-N_{k}{ }^{\prime}, m^{\prime}, I\right)$.

Assuming only dominant design parameters $\left(x_{1}\right)_{K, M}$ number of which is $N_{k}{ }^{\prime}, N_{m}{ }^{\prime}$, $\left(\boldsymbol{x}_{2} \cong \boldsymbol{0}\right)_{K, M}$, we yield:

$$
\begin{equation*}
\left(\boldsymbol{x}_{l} \cong \boldsymbol{A}_{11}-1 \boldsymbol{b}_{l}\right)_{K, M} . \tag{6.7}
\end{equation*}
$$

Example 2

Let us have the same system as in example 1 and we have only 3 eigenvalues and 3 eigenvectors measured. The experimental modal and spectral data $\mathbf{V}_{0 \mathrm{e}}$ and \mathbf{S}_{e} are taken from example 1.

$$
\begin{aligned}
& \mathbf{V}_{\text {oem }}=\left[\begin{array}{rrc}
0.2032 & 0.0284 & 0.3540 \\
0.2202 & 0.0310 & 0.3562 \\
0.1433 & 0.3437 & -0.1182 \\
0.1414 & 0.3391 & -0.1116 \\
0.4085 & -0.2764 & -0.2333
\end{array}\right] \\
& \mathbf{S}_{\mathrm{em}}=\operatorname{diag}([172.9,392.7,936.46])
\end{aligned}
$$

Now we will make parameter subset selection. SVD and Q-R decomposition of matrices A_{K} and A_{M} give the following results:
-dominant stiffness design parameters are $\mathrm{k}_{6}, \mathrm{k}_{3}, \mathrm{k}_{5}$ and k_{1}
-dominant mass design parameters are $\mathrm{m}_{5}, \mathrm{~m}_{2}$, and m_{3}
Comparison of analytical, effective and updated design parameters is given in the next tables $1.0 \mathrm{e}+003^{*}$

k_{aj}	1.6	1.2	1.5	1.0
k_{rj}	1.84	1.056	1.68	1.14
k_{uj}	1.7888	1.1751	1.5042	1.2189

m_{aj}	5.5	5.5	3.0
$\mathrm{~m}_{\mathrm{rj}}$	4.95	5.94	3.3
$\mathrm{~m}_{\mathrm{uj}}$	5.2377	5.6646	3.384

$\alpha_{\mathrm{a}}=0.01, \beta_{\mathrm{a}}=0.0001, \alpha_{\mathrm{r}}=0.011, \beta_{\mathrm{r}}=0.0001, \alpha_{\mathrm{e}}=0.0111, \beta_{\mathrm{e}}=0.0001$

Example 3

Let us have the same system as in example 1. Number of measured modes $\mathrm{m}=3$, number of measured degree of freedom $\mathrm{N}=4$. We used SVD and Q-R decomposition for removing one line from modal matrix (it is the second line). The experimental modal and spectral data $\mathbf{V}_{0 \mathrm{e}}$ and \mathbf{S}_{e} are taken from example 1.
Missing modal data $\mathrm{V}_{0 \mathrm{o}}$ in equation (5.2) is given by equation (5.4)

$$
\mathrm{V}_{\mathrm{no}_{\mathrm{o}}}=\left[\begin{array}{llll}
0.2135 & 0.0300 & 0.3682 & 0.0030
\end{array} 1.2931\right]
$$

Spectral and modal matrices are the same as in example 2 except $2^{\text {nd }}$ line where are $1^{\text {st }}$ three entries of V_{0}.
Now we will make parameter subset selection. SVD and Q-R decomposition of matrices A_{K} and A_{M} give the following results:
-dominant stiffness design parameters are $\mathrm{k}_{6}, \mathrm{k}_{3}, \mathrm{k}_{5}$ and k_{1}
-dominant mass design parameters are $\mathrm{m}_{5}, \mathrm{~m}_{2}$ and m_{3}
Comparison of analytical, effective and updated design parameters is given in the next tables
$1.0 \mathrm{e}+003^{*}$

k_{aj}	1.6	1.2	1.5	1.0
k_{rj}	1.84	1.056	1.68	1.14
k_{uj}	1.8127	1.0955	1.5829	1.1657

m_{aj}	5.5	5.5	3.0
m_{rj}	4.95	5.94	3.3
$\mathrm{~m}_{\mathrm{uj}}$	5.0211	5.6643	3.4097

$\alpha_{\mathrm{a}}=0.01, \beta_{\mathrm{a}}=0.0001, \alpha_{\mathrm{r}}=0.011, \beta_{\mathrm{r}}=0.0001, \alpha_{\mathrm{u}}=0.0111, \beta_{\mathrm{u}}=0.0001$

7. Conclusion

Updating methods for the cases of complete spectral and modal data, incomplete spectral and modal data with complete eigenvectors and incomplete modal and spectral data with incomplete eigenvectors are presented. From comparison of analytical, effective and updated design parameters which have been determined in examples for all cases follows that the parameter subset selection cuts down the sensitivity of design parameters on noise errors. The full design parameter set sometimes leads to meaningless results due to the bad condition of the coefficient matrix A

8.References

[1] Fritzen C.P., Kiefer Th.:" Localisation and Correction of Errors in Analytical Models". $10^{\text {th }}$ IMAC 1992, pp. 1064-1071
[2] Lieven N.A.J; Ewins D.J.: "Expansion of Modal Data for Correlation"; 8th IMAC 1990; pp. 605-609.
[3] Starek L., Inman D.,J., and Kress A.: "A Symmetric Inverse Vibration Problem", ASME Journal of Vibration and Acoustics, Vol 114, Oct. 1992, pp. 564-568.
[4] Starek L., Inman D.J.:"Updating of Non-conservative Structure Using Measured Data Via Inverse Methods", ASME 1997 Design Engineering Technical Conferences, $16^{\text {th }}$ Biennial Conference on Mechanical Vibration and Noise, September 14-17,1997, Sacramento, California. To appear.

