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Abstract

Faulty rolling element bearings under very low shaft speed and light load exhibit

vibrations which possess periodic envelope-autocorrelations. The main frequencies of this

envelope-autocorrelation are the fault characteristic frequency and its harmonics. In this
paper, one of the improved Notch Filtering Techniques with a designed filter is used to
estimate the fault characteristic frequency and its harmonics. The designed filter is used
to remove the estimated frequency. With this technique, the fault characteristic frequency

and its harmonics can be accurately estimated.

1 Introduction

The condition monitoring of rotating machinery can reduce operational and main-

tenance costs, provide a significant improvement in plant economy, especially for the

condition monitoring of rolling element bearings which are the most commonly wearing
parts in rot sting machinery.

A variety of bearing fault detection techniques have been proposed. The non dimen-

sional amplitude parameters [1, 6], such as Crest factors(Cf ), Kurtosis value (Kv), and so
on, are reliable only in the presence of significant impulsiveness.

Spectral analysis of bearing vibration in which the fault signals are not submerged

in background noise frequencies and other structural resonance frequencies is the useful
diagnostic and fault detection technique. The cepstrum [1, 2], while it is seldom used on
its own, is an invaluable complementary technique to spectral analysis. It is also limited
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to use when strong background noise and other structural signals do not swamp the fault

vibration signal.
Envelope power spectrum [4] is very useful in the presence of a high background

noise level, but in complex structures it also contains many other frequencies and side

frequencies.
A moving window technique in the fault detection of a ball bearing has been investi-

gated in [5], the signal to noise ratio of measured vibration signature of a ball bearing is
improved using this technique. The algorithm is quite powerful in the early detection of

flaws in a ball bearing system.

Raw spectra or the demodulated ones of a signal from defect bearings have an EFSD
pattern (“equal frequency spacing distribution” ) [7], the spacing of the main peak is the

defect frequency, and the features of multiple defects are the superposition of these of

each defect.
An impulse index based on the Haar transform, and the phase-shift effect on both

Haar transformed data and the impulse index have been investigated in [8].

Most of these techniques are only available to the normal shaft speed. They are useful
in laboratory condition, but will not be so effective in the harsh environment of factory
plants, especially when the speed is less than 100 RPM. Some of them may be useful
for the outer race fault, but not for the inner race fault and roller fault. The outer race

fault is easily detected in comparison with the inner race fault and the roller fault [1, 4],

because the outer race is usually closer to the transducer.
AR spectral estimation in low speed has been investigated [9], it is very effective for

vibration signal without high resonance frequencies and noise frequencies, but in practical

condition, the vibration signal from accelerometer usually contains some large peak high

resonance frequencies and noise frequencies, the low fault characteristic frequency signal

may be weak, because the accelerometer is much more sensitive to the middle and high
frequencies.

In this paper, a frequency estimation technique based on notch filtering proposed

by Quinn and Fernandes is used to estimate the fault characteristic frequency and its

harmonics of the envelope-autocorrelation from the fault rolling element bearing under
the very low shaft speed and the light load. The designed filter is used to remove the
estimated frequency.

z Frequency Estimation

2.1 Frequency Estimation for

For periodical envelope-autocorrelation

Method

Envelope-Autocorrelation

&(i) from the fault rolling element bearing

under the very low shaft speed and the light load [14] can be expressed

NR
Rzz(t) = p + ~ A~RCOS(jLW)t+ q&)+ n(t),

j=l
(1)

where p is the mean value, W. is the fault characteristic frequency of the rolling element

bearing. A~R and #& are the amplitude and the initial phase of j-th harmonic, and ~R
is the number of harmonics. n(t) is some zero-mean random noise sequence with variance

cr2. This is a multi-harmonic frequency estimation problem.



The maximum likelihood frequency estimation [12] for the envelope-autocorrelation is

&P = m~axJR(U), (2)

where
T–1

(3)
t=l

The maximization of IR is computationally intensive, particularly if T is large.

2.2 Technique of Quinn and Fernandes in Frequency Estima-
tion

Quinn and Fernandes [11] have suggested a computationally efficient and near statis-

tically efficient method for estimating frequency by estimating the parameters a and @ in

the following equation:

l?,.(t) – pl?zz(t – 1) + Rzz(t – 2) = n(t) – cm(t – 1) + n(t – 2), (4)

subject to a = ~. The estimated frequency is found from

of

1
L@ = cos–l(–@.

2

The algorithm proceeds as follows:

1. Set a = al = 2 cos(&) where tii is some initial estimate of U. and set j = 1.

2. Filter the data to produce ~t,j

(t)j = ‘z.z(t) + aj<~-l,j – (’-z,j; t=o,l,...,l–l

where ~t,j = O for t <0.

3. Form @j by regressing (<t)j + (t-z,j) on (t-I,j

4. If l~j – ~jl is small enough, set Lo = cos-l(~pj)

~j+l = @j, increment j and go to step 2.

The Quinn-Fernandes technique effectively estimates
a smoothed periodogram occurs [13].

(5)

(6)

and terminate. Otherwise, put

the frequency at which the peak
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Figurel: The frequency characteristic curve of the designed filter

2.3 Design of Filter for Removing the Estimated Frequency

Often, once a frequency is estimated accurately, it is desirable to remove this frequency
from the signal. Applying the filter

H(z) =
1 – 2COS(OP)Z-1 + Z-2

1 – 2a Cos(tip)z-l + c#z-2
(7)

where a = 0.99 to the signal will have the desired effect.

Note that a is chosen to be less than one to ensure that the filtered signal is bounded

(i.e. this ensures that the filter is strictly stable).

The frequency characteristic curve of the designed filter is shown in Fig. 1. With this

filter, the estimated frequency is easily removed from the signal.

3 Frequency Estimation in Fault Detection of Rolling

Element Bearing

The in-situ vibration data are from a bearing housing which supports two descaler

pinch rolls. The pinch rolls run at a very low shaft speed under the random variation with

a small range about the mean. The bearings of interest are of type SKF23226 double row
spherical roller bearings.

The acceleration signal in Fig.2a is from a bearing with inner race fault. The mean

shaft speed of rolls is 36.06 RF’A4(0.601Hz). Fig.2b is the envelope-autocorrelation of
Fig.2a. Fig.3a is the acceleration signal from a bearing with good condition, and Fig.3b
is the envelope-autocorrelation of Fig. 3a. The periodicity of envelope-autocorrelation

from the fault bearing is notable (see Fig.2b), but it is not the case for the good condition

bearing (see Fig.3b).

Fig.4 is the frequency estimation of envelope-autocorrelation (shown in Fig.2b). Fig.4a

is the power spectrum of envelope-autocorrelation, and the inner race fault characteristic
frequency & = 6.513Hz is estimated. Fig.4b is the power spectrum after the removal of

the inner race fault characteristic frequency Jo = 6.,513Hz, and the 2-rid harmonic & =



13.042Hz is estimated. Fig.4c is the power spectrum after the removal of 00 = 6.513Hz
and &l = 13.042 Hz, and the 3-rd harmonic L2 = 19.57217z is estimated, and so on.

4 Conclusions

In this paper, the technique of Quinn and Fernandes is used in frequency estimation
of envelope-autocorrelation from the fault rolling element bearing under very low shaft
speed and light load. Using this estimated frequency, a simple notch filter removes the

frequency component so that further detail in the vibration signal may be analysed. In
this instance, the fault characteristic frequency and its harmonics are estimated (see Fig.4)

and subsequently removed with this technique.
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Figure 2: In-situ data from the bearing with inner race fault (.fsaw = sooo~~)’ (a)

– acceleration signal from bar #1365, (b) – envelope-autocorrelation of (a)
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Figure 3: In-situ data from the bearing with good condition (.fSa~P = 5000Hz):
—acceleration signal from bar #1370, (b) – envelope- autocorrelation of

(a)
(a)
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Figure 4: Frequency estimation and removal of estimated frequency


