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ABSTRACT
The purpose of this study is to understand the main differences between deterministic and ran-
dom response characteristics of a cantilever beam in the neighborhood of combination para-
m-etricresonance. The beam orientation with respect to the excitation is made in such a way
that the bending and torsion modes are in cross coupling through the excitation. In the absence
of excitation the two modes are also coupled due to nonlinear inertia forces. This means that
both linear generalized and normal coordinates are the same. For sinusoidal parametric excita-
tion the beam experiences instability in the neighborhood of the combination parametric reso-
nance Q = ~ + ~, where Q is the excitation frequency, @utmd @$are the bending and torsion
first mode natural frequencies, respectively. The dependence of the response amplitude on the
excitation level reveals three distinct regions which include linear behavior, jump phenomena,
and energy transfer. Under random excitation, with center frequency close to the sum of the
bending and torsion mode frequencies, the system may experience a single response, two pos-
sible responses or nonstationary responses depending on the excitation level. The response
may also be Gaussian or non-Gaussian depending on the excitation level as well.
Experimentally, it is possible to obtain two different responses for the same excitation level by
providing some perturbation to the system.

ANALYTICAL MODELING
Figure 1 shows a schematic diagram of a cantilever beam carries a mass m whose mass
moment of inertia about z-axis is l.. The beam can experience bending and torsion oscillations
under a support excitation Y(t). The coupling can be visualized by representing the base exci-
tation as an inertia force on the end -mass (Roberts, 1985). According to Roberts, if the beam
is instantaneously bent out of the excitation plane and twisted slightly, then the end inertia force
acting through the bending displacement gives a torque on the beam cross-section. Similarly,
because of the smaller rotation of the principal planes of the cross-section, the end inertia force
contributes a bending moment about a local plane of minimum bending stiffness proportional
to the twist angle @. The nonlinear coupling may be traced directly to the presence of Vo, a
small but important displacement in the plane of the excitation. A comprehensive analytical
modeling (excluding nonlinear curvature) has been given by Cartmell (1990). The displace-



ments of the beam elastic axis in the x, y, and z directions at z=L are described by uO(L,t),
vO(L,t),and wO(L,t),respectively. The displacement along y axis v(z,t) can be written in terms
of bending and torsion displacement by setting the curvature about x-axis to zero, i.e. V“s u“+,

where a prime denotes differentiation with respect to z. Considering only the first mode in
bending and torsion, the following solutions are adopted

()u(z,t) = uO(t)sin ~ , ()0(4 = O,(M —E (1)

where uo(t) and @o(t)are the generalized coordinates at z=L. Neglecting the extension of the
beam elastic axis, and taking into account the axial drop wO(L,t)in terms of u one can write the
equations of motion using Lagrange’s equation as (Hijawi, 1996)

[l+c4u2~+2rc,4+r2%+2c4B:uuh+c4uu%+c5u?(T)=o (3)

where U = u@, ~(t)= Y(z)/b, b is the beam width, a dot denotes differentiation with respect to

the nondimensional time parameter z=~t, ~=n2 ~-is thebendingnatural frequency,

r=~~, ~=n~- is the torsion natural frequency, c is a constant which accounts for
the non-circular cross-section of the beam, J is polar area moment of inertia of the beam cross-
section, E is Young’s modulus, G is the modulus of rigidity, ci and B1 are constants, ~u and LO
are damping factors associated with bending and torsion, respectively. The nonlinear differential
equations (2) and (3) are coupled through cubic nonlinear inertia and parametric excitation
through the other mode. In addition to the inertia nonlinearity, the bending equation (2) also
includes cubic curvature nonlinearity.

DETERMINISTIC RESPONSE BACKGROUND
The linearized form of equations (2) and (3) only include cross coupling through the parametric

excitation terms B1~?(~) and C5M(T). Under sinusoidal excitation y’(~)=z~~cos(r~z),where
rFQ/q, the beam may experience parametric instability of summed combination type q= r+l
(see, e.g., Dugundji and Mukhopadhyay, 1973 and Roberts, 1985). The instability is limited by
a boundary curve of bounded non-zero response of V-shaped and centered. Inside the instabil-
ity boundary the response can be estimated by considering the full nonlinear equations (2) and
(3) using the method of multiple scales (Hijawi, 1996). The dynamic response of the system in
the neighborhood of the combined resonance rr=+l was given in the time and frequency
domains. In the time domain the interaction is reflected by periodic signals carrying a fre-
quency component of the other mode.

The dependence of the response amplitudes on the external frequency detuning parameter o
(r-r~ -1-m, where E is a small parameter) exhibited nonlinear characteristics with the
response amplitudes overhang to the left which is the main characteristics of systems with non-
linear inertia. For any detuning parameter there are two solutions, the larger one is belonging to
a stable manifold while the smaller one is unstable. At the point where stable and unstable
solutions meet (saddle or turning point) the response collapses to the static equilibrium position.
The experimental measurements showed that at relatively high excitation levels the energy
transfers to the torsion mode keeping the bending mode at the same level. The influence of the
system nonlinearities was reflected in the response spectra since some spikes appeared at fre-
quencies other than the natural frequencies of the f~st bending and torsion modes.



RANDOM RESPONSE ANALYSIS
Linear Stability Analysis: The response of the beam under random parametric excitation is not
a simple task. However, the linear part of the system equations of motion coupled through
parametric excitation cab be examined for stochastic stability by estimating the maximum value

of Lyapunov exponent. Under the condition that ~ 8cmGL2/E~ = mnb2~, the linear form of
equations (2) and (3) takes the form

u+ 2(utJ + U - 0.3669@?(@ = O (4)

These equations fall under the class examined by Ariaratnam and Xie (1992) who showed that
the largest Lyapunov exponent L is given by the expression

where S( 1+r) denotes the power spectral density of the stochastic excitation ~(~) at frequency

(l+r). If L e O, then the beam equilibrium position U = ~ =0 is almost-surely asymptotically
stable, otherwise it is unstable. Once the equilibrium position becomes unstable, the beam
motion will grow and achieve bounded variations due to the system nonlinearities.

Nonlinear Response: In view of the complex form of equations (2) and (3), we will estimate
the response statistics by employing Monte Carlo simulation. The excitation can be either white
noise or band limited random process. The band limited excitation is generated by a linear filter
subjected to white noise random process. The filter equation in the nondimensional form

q+ 2 gf Clyq’+ 6J2q= Y’(z) (7)

The input bandwidth and center frequency are controlled by ~f and ~, respectively. Applying

the coordinate transformation (U, U’,~,&,q,q’} + {X1,X2,X~,X4,X5,Xb} the equations of
motion (1) and (2) and the filter equation (21) take the form

x; =X2

{X2= – [2~uX2+Xl + 2c1X~X4X2+C2X1X;+c1X~X4X,+cqX; +BIXqX~] 1 + CIX;+ C2X;1

Time history records of the filtered excitation E[q2] from the white noise random process ?“,
and response mean squares, for different filter bandwidths are found to achieve stationarity in
the steady state regime. The response stationarity is preserved for excitation levels which are
less than a critical level above which the response becomes nonstationrny. If the excitation is
purely white noise, the response coordinates experience quasi-nonstationarity random process.
The white noise excitation level has to be higher than the filtered white noise because the power
spectrum of the white noise is uniformly spread over a wide band frequency range for which



the bending and torsion modes will pick a small portion of this power corresponding to their
natural frequencies. This is not the case for filtered white noise where its power spectrum is
concentrated around the sum of the two natural frequencies of the beam.

The dependence of the response mean square on the excitation level is shown in Figure 2 for
filter darnping ratios &f=O.OO1and 0.01 shown by solid and empty small circles, respectively,
The filtered excitation bandwidth, given by the filter damping ratio, affects the bifurcation point
of response. For example, for small bandwidth, ~f=O.OO1,the bifurcation point occurs at a
very small excitation level 0.025, while for relatively larger bandwidth @ 0.01 the bifurcation
point occurs at excitation level 0.4. Figures 3 shows the dependence of the response mean
square on the white noise excitation level. It is obvious that the system has zero response for
excitation range greater than the filtered white noise case. The bifurcation point occurs at exci-
tation level 2.5. Contrary to direct parametric excitation for each mode, the well known “on-off
intermittence” close to the bifurcation point does not take place in the present case.

EXPERIMENTAL RESULTS
The model beam was excited by a limited bandwidth random excitation of 2 Hz and a central
frequency of 45 Hz which is very close to the summation of the bending and torsion natural
frequencies (Q= q + ~ = 44.6 Hz).

It was found experimentally that the system has a single response for excitation mean square
less than 2.25 and two possible responses for higher excitation mean square. The response
mean square time history records are essentially stationary. The probability density functions
of both the excitation and the torsion response have Gaussian distribution while the bending
response shows some periodicity as reflected by its bimodal distribution which was also
revealed from Monte Carlo simulation. Increasing the excitation mean square to 3.0, shows
stronger nonlinear interaction between the response modes. The response is found to have
more than one attractor depending on the initial conditions or perturbations triggered by hand.
When the beam is perturbed by hand the response it is observed that more energy is transferred
to the bending mode.

The dependence of the response mean square on the excitation level is shown in Figure 4. It
is seen that at low excitation levels the bending mode has zero response because the structural
damping forces overcome the input energy. However, the torsion mode has oscillations even
for low excitation levels. It was noticed experimentally that for different configurations of the
beam (for example vertical beam under parametric excitation) the region of zero response for
both bending and torsion is more distinguishable. Figure 4 shows that as the excitation level
increases, the bending mode starts to bifurcate to a non-zero mean square value. When the
excitation level is higher than 2.25 the system starts to have two different possible responses.
Experimentally, it is possible to obtain two different responses for the same excitation level by
providing some perturbation to the beam. It should be pointed out that the data was taken after
the system reaches a stationary response as shown in the mean square time histories.

When the bandwidth of the excitation is increased to 10 Hz for the same central frequency
(45 Hz), new features of the system response are detected. The system has a single response
for excitation mean square less than 4.0 after which the system possesses many possible non-
stationary responses for the same excitation level. For excitation mean square of 4.64, the
mean square time history records of the bending and torsion response show that the response is
not stationary and different tests can produce different results. Figures 5a through 5b show the
mean square time histories of two tests conducted at the same excitation level. It is obvious that
even after a long time (1000 see) the response does not reach stationarity. The figures also
reflect the energy exchange between the bending and torsion modes. The dependence of the
response mean square on the excitation level mean square is displayed in Figure 6. The
response for excitation mean square greater than 4.0, however, should not be taken into account
since it is not stationary.



CONCLUSIONS
Deterministic and stochastic excitations of a cantilever beam with an end mass have revealed
different characteristics. Under sinusoidal parametric excitation the beam equilibrium position
can be stable or unstable close to combination parametric resonance depending on the excitation
frequency and amplitude. In the unstable zone the beam possesses one steady stable response
with energy exchange between bending and torsion modes. Under random excitation the
response stochastic stability is obtained in terms of the largest Lyapunov exponent. When the
Largest Lyapunov exponent takes positive values the beam response statistics are estimated
using Monte Carlo simulation. The experimental results showed that at relatively high excita-
tion levels the system has two possible responses for narrow band excitation while many non-
stationary responses are evident for wide band excitation. This was verified for different tests at
the same excitation level. Both analytical and experimental results showed that the main
features of the system dynamical characteristic are in good agreement. For both deterministic
and random excitation the investigations perceived that the system nonlinearities play a
significant role.
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Figure 1 (a) Schematic diagram of the system and coordinate frame (b) kinematic
coupling provided by VOdisplacement and (c) beam cross-section and its deflection.
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