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ABSTRACT

The present paper deals with a practical comparison of BE and FE methods as they could be
applied to sound radiation from a baffled elastic plate subjected to a point load. Such an
application is representative of a wider class of vibro-acoustic problems where a time-harmonic
mechanical excitation is driving a structure which in turns radiates sound in the surrounding
fluid. The numerical treatment of this problem is performed by combining a structural FE
model (and his related modal representation) with an acoustic FE or BE model.

1. INTRODUCTION

Modeling sound radiation from vibrating structures usually relies, at least in the ‘low’
frequency range, on boundary integral representations of the acoustic field. Either direct and
indirect integral representations are available for that purpose and form the mathematical basis

of related acoustic boundary element (BE) methods [Ciskowski and Brebbia, 1991]. Such
formulations have been used for a long time by the acoustic community. Model size’s
reduction and a priori verification of the Sommerfeld radiation condition are presented as key
characteristics of BE methods. On the other hand, domain methods (like finite element (FE)
methods) require an appropriate treatment of the radiation condition, involve usually a larger
amount of data (as implied by the related volume mesh) but are characterized by sparse
matrices and reduced calculation times.

The acoustic FE model relies on variable order infinite wave envelope elements [Astley,

Macaulay and Coyette, 1994; Cremers, Fyfe and Coyette, 1994] for handling approximately
the Sommerfeld radiation condition. Different classes of infinite wave envelope elements



(spherical and spheroidal) of variable order [SYSNOISE, 1996] have been used for that
purpose. A comparison of results associated to different models is presented for this particular
benchmark problem. Both field values (acoustic pressures) and integrated values (radiated
power) are involved in this comparison. They show the capability of infinite element
formulations to resolve the acoustic field in the vicinity of a vibrating structure.

2. BENCHMARK DEFINITION

The problem considered is related to sound radiation from an baffled elastic plate
(Figure 1) excited by a point load. This problem is extracted from a set of benchmarks
published by SFM (Soci&6 Frangaise de M&canique) as a fwst guide for validating vibro-

acoustic softwares [Valor, 1996].
The following data are used for the elastic plate (length a = 1 m, length b = 1 m,

thickness t = 0.01 m, Young modulus E = 2.10+11Pa, Poisson ratio v = 0.3, density p = 7800

kg/m3, structural loss factor q = 10-2). The plate is simply supported along the four edges and

is surrounded by a rigid (plane) baffle. The acoustic fluid (on one side of the plate) is the air
with conventional material properties (density p = 1.2 kg/m3 and speed of sound c = 340 rnls).

A point load of amplitude F = 1 N (with a time dependence like e+iw where @ is the circular
frequency) is applied at location (xl = 0.2 m, X2= -0.3 m).
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Figure 1: Elastic plate problem.

3. NUMERICAL MODELS

The problem has been

Figure 2: Elastic plate -FE mesh
(100 QUAD4, 121 nodes).

modeled using two particular coupled methods. Both methods
refer to a conventional structural FE model for the plate. The f~st method combines this
structural FE model with an acoustic BE model (based on Rayleigh’s integral representation
for baffled problems) while the second one combines the structural FE model with an acoustic

FE model where the ‘far’ field is modeled by infinite wave envelope elements [Astley,

Macaulay and Coyette, 1994]. The coupled effects are taken into account in the usual way

[Morand and Ohayon, 1995] so that the discrete coupled system can be formulated as:

[ 1[)[1z, ((i)) c U F,
p(.i)2cT ZA(o)) P = F.

(1)



where Zs and ZA are the structural and acoustic impedance matrices, C is the geometrical
coupling matrix, Fs and FA are the structural and acoustical load vectors, U and P are the
vectors of nodal displacements (or modal participation factors) and nodal pressures. Details are
omitted here but can be found in references listed at the end of the paper.

3.1 Structural FE model

The FE structural mesh is represented in Figure 2 (100 QUAD4 thin shell elements). A
reduced modal basis involving the f~st 25 eigenmodes has been selected. The related
eigenfrequencies and modal orders along x1- and xz-directions are listed in Table 1.

Mode Hz Mode Hz Mode Hz Mode Hz Mode Hz
(1,1) 48.140 (2,1) 120.35 (3,1) 240.70 (4, 1) 409.19 (5,1) 625.82
(1,2) 120.35 (2,2) 192.56 (3,2) 312.91 (4,2) 481.40 (5,2) 698.03
(1,3) 240.07 (2,3) 312.91 (3,3) 433.26 (4,3) 601.75 (5,3) 818.38
(1,4) 409.19 I (2,4) I 481.40 I (3,4) I 601.75 I (4,4) I 770.24 I (5,4) 986.87
(1,5) I 625.82 (2,5) 698.03 (3,5) 818.38 (4,5) 986.87 (5,5) I 1203.5

Table 1: Elastic plate - First 25 eigenfrequencies.

3.2 Acoustic BE model

The acoustic BE model relies on Rayleigh’s integral representation (as valid for a
baffled plane structure). The related BE mesh is identical to the structural FE mesh shown in
Figure 2. This acoustic BE model (coupled to the above structural FE model) produces a
solution nearly identical (at least in the considered frequency range) to the available reference

solution [Valor, 1996].

3.3 Acoustic FE models

Various acoustic FE models have been used for this benchmark. All these models rely
on a conventional pressure formulation for the acoustic fluid and a suitable volume mesh in the
vicinity of the vibrating structure. This particular ‘inner’ domain correspond to either a box
(Figure 3) for meshes Al and A2 (Figure 5) or a semi-ellipsoid (Figure 4) for meshes A3 and
A4 (Figure 6).
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Figure 3: ‘Inner’ acoustic domain related

to meshes Al (h=O.5 a) and A2 (h=O.3 a).

Figure 4: ‘Inner’ acoustic domain related

to meshes A3 (h=O.25 a) and A4 (h=O. 10 a).



The models differ by the nature of infinite wave envelope elements selected for the
‘outer’ field. ‘Spherical’ infinite elements are used in conjunction with meshes Al and A2 while
‘oblate spheroidal’ infinite elements are selected for meshes A3 and A4. It should be
emphasized that meshes Al and A2 violate the ‘circumscribing’ sphere condition while the
external ellipsoidal boundary surface of meshes A3 and A4 is enclosing totally the vibrating
structure.
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Figure 5: Acoustic FE meshes Al (left; 1350 nodes and 980 elements)
and A2 (right; 900 nodes and 588 elements).
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Figure 6: Acoustic FE meshes A3 (left; 1045 nodes and 880 elements)
and A4 (right; 643 nodes and 440 elements).
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4. NUMERICAL RESULTS

The acoustic response has been evaluated for the different models in the frequency
range 10-300 Hz using a step of 1 Hz. For each model, attention has been paid to single field
values (pressure at two field points located at (Pl: x1=O, X2=0, X3=O)and at (P2: X1=O,X2=0,
X3=1) but also to integrated quantities. For the acoustic engineer, the radiated power W,,~ is

such a meaningful integrated quantity that can be evaluated from:

W,,, (6)) = ~ Re(p(x,co)v~ (x,m))dS(x)
s

where p and v. are the pressure and the normal velocity along the radiating surface S.

4.1 Spherical infinite elements

Field pressures at points P 1 and P2 as obtained using mesh Al and spherical infinite
elements of order 1, 2 and 3 are presented in Figure 7. Similar results obtained with mesh A2

are presented in Figure 8. The radiated power as obtained using meshes Al and A2 is
presented in Figure 9.

The results obtained show an excellent agreement with the reference solution for
elements of order greater or equal to 2 along the radial direction.
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Figure 7: Magnitude of field pressure (log scale) at points P1 (left) and P2 (right) using
mesh A 1 (spherical infinite elements of order 1,2 and 3)

compared to reference solution (SFM, 1996).
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Figure 8: Magnitude of field pressure (log scale) at points PI (left) and P2 (right) using
mesh A2 (spherical infinite elements of order 1,2 and 3)

compared to reference solution
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(SFM, 1996).

Figure 9: Radiated power (log scale) using mesh Al (left) and A2 (right)
(spherical infinite elements of order 1,2 and 3)
compared to reference solution (SFM, 1996).

4.2 Oblate spheroidal infinite elements

In the same way, field pressures at points PI and P2 as obtained using mesh A3 and
oblate spheroidal infinite elements of order 1, 2 and 3 are presented in Figure 10. Similar
results obtained with mesh A4 are presented in Figure 11. The radiated power as obtained
using meshes A3 and A4 is presented in Figure 12.



Asitcan beseenfrom inspection of Figures 10 and 11, theconvergence is still good
along the radiating surface but deteriorates at greater distance.
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5. CONC1

O: Magnitude of field pressure (log scale) at points P1 (left) and P2 (right) using
mesh A3 (oblate spheroidal infinite elements of order 1,2 and 3)

compared to reference solution (SFM, 1996).

USION

A practical comparison of FE and BE results for a simple radiation problem involving a
mechanically excited plate has been presented. The problem is representative of a wider class
of problems arising in industrial applications. The combined use of finite and infinite elements
allows to capture the reference solution available for that problem at least in the vicinity of the
radiating structure as it can be seen from single value (field pressure at plate’s center) and
integrated value (radiated power) predictions. These good performances have been obtained
for both spherical and oblate spheroidal infinite elements. On the other hand, spheroidal
elements are leading (at least for the considered case) to a slower convergence that should be
investigated in more details.
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Figure 11: Magnitude of field pressure (log scale) at points P1 (left) and P2 (right) using
mesh A4 (oblate spheroidal infinite elements of order 1,2 and 3)

compared to reference solution (SFM, 1996).
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Figure 12: Radiated power (log scale) using mesh A3 (left) and A4 (right)
(oblate spheroidal infinite elements of order 1,2 and 3)

compared to reference solution (SFM, 1996).


