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- Abstract Onthe basis of anonlinear dynamic stability theory forshell constructions of

arbitrary geometries and loadings, the phenomenon of the parametrically excited vibration

is treated in a general manner and an approach is offered to solve linear and nonlinear

problems. For an example of application, instability regions for plates are determined

with the help of the developed basic equations; various influences such as damping, initial

static load and inertial interaction with the fundamental motion are shown and discussed.

1 Introduction

A particular phenomenon of the vibration and stability theory is the parametric excitation

which, under certain excit ation-eigenfrequency ratios of the system, cause the motion of

the fundamental state ( Fs) to become unstable and change into a different form of vibra-

tion with an often considerable amplitude 1. The relevant differential equation systems are

characterized by the fact that, in contrast to the forced vibration, the load is included as

a parameter. According to the linear theory, these equations have solutions of unlimited

growth for certain values of their coefficients, and thus whole regions of dynamic insta-

bilityy. The most dangerous ones, so-called main instability regions, meet the frequency

axis where the excitation frequency is just twice the eigenfrequency of the loaded system.

Within these regions, an arbitrary disturbance causes exponentially growing amplitudes.

If, however, nonlinear terms are included the parametrically excited vibration remains

limited (even without damping) and finally reaches a limit cycle with a stationary ampli-

tude (small-scale instability, large-scale stability). The reason for this is the well-known

1 For example, we would liketo refer to recentexperimentalstudieson cables [5] whichshow that very
stableoscillationswith relatedlargeamplitudesmay occur in caseof parametricresonances,in particular.



phenomenon of “protruding” resonance curves occuring in nonlinear vibrations. The li-

mits of the instability regions, however, important to examine the stability of the Fs,

can be determined with sufficient accuracy using nothing but linear differential equations;

also see [1]. As an example for arches subjected to pulsating loads, Figure 1 shows the

disturbance-induced, nonlinear parametrically excited vibration as a function of time as

well as in the phase plane. The initial exponential increase of the amplitudes and the

transition into the limit cycle are clearly visible (from [2]).
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Figure 1 Nonlinear parametrically excited arch vibrations

apex rotation as a function of time (A) and corresponding phase diagram (B).

In the following, dynamic equations generally applicable to shell-type structures are de-

rived allowing the examination of arbitrary vibration and instability phenomena (linear

and nonlinear). The tensor formulation provides systematically structured and extremely

compact relations which may be adopted to specific applications in a simple manner2.

All basic equations, the constitutive relations, the dynamic boundary conditions and the

stability equations comprize the nonlinear contributions of the disturbance-induced kine-

mates as well as the products with these and the deformations of the sf Fs. An imperfect

initial geometry given, the imperfections important to the stability analysis of shells may

be integrated into the overall concept, too.

2 Stability Equations for Shell Structures

To formulate stability equations for shell structures of arbitrary geometries, first the

equations of motion for an undisturbed motion state (Fs) and for a neighboring motion

state ( Ns) disturbed in the initial displacement and velocity conditions are established.

For the Fs to be examined for its stability, the vector representation provides the following

equations of motion in the region:

(1)

2 In analogy with the method shown here, general basic equations of a similar structure can be

developed both for continua and rod constructions;see e.g. [2].
3 compare [4].



In addition to the internal force and moment vectors (i”, &a), the left side of (1) cent ains

directionally stable and unstable (p~, q~) load contributions, while the right side comprises

inertial (~K, ~~) and damping (~~, ;~) forces and moments.

Both for the equation of motion of the Ns and that of the Fs the principle of virtual

displacements can be utilized to obtain work equations the contributions of which can

be summarized to portions of virtual internal work JW, kinetic energy 6E, and virtual

external work caused by directionally unstable loads in the region (6~G) and at the

boundaries (8~R). Here, the work equation of the Fs is given as an example; the equation

of the Ns has an analogous structure and differs only in that the superimposed “ o“ is

substituted by a dash to indicate the state variables.

J%:bvdzi + Jpki, &($vdh -1-~qkii’&hvdi - J%KiWd~-

(i) (1) (1) (2)

j& 6vdi + j&X r%) &P d~ + j’(iia X ii”) cf(p d~ = O
(2)

,a
(i) (i) (i)

Further, the independent portions of the Fs can be separated from those of the Ns. The

permissibility of this approach can be proven by directly deriving the relations from the

3D=continuum. In the work equation, the remaining portions can thus be given as

6W+-6E=6NG+6NR. (3)

Here, the contributions of internal work and kinetic energy are given as examples:

i$w = Js”~ b-yapd~ + Jma~ 6K.D d~ +

(i) (i)

J%@ 6A~.p d~ + J%”3&A~. d/i - j%a~ i$A~.p dii

(i) (1) (i)

6E = fih6kc%kdi+ fihdtik6vkdi+A6E

(i) (i)

The above relations apply also to geometrically nonlinear approaches, because they con-

(4)

tain the disturbance-induced kinemates including square elements of v~. 6E shows the

relevant terms from the inert ial and damping forces, portions of a higher order of “ h“ are

summarized in A6E. With the last three of the integrals in W the internal forces of the

Fs - also including the portions due to bending - are introduced into the stability analysis.

In addition, the first two integrals of the internal work contain those contributions caused

by the disturbance-induced internal reaction increases s“~ and map. From the constitu-

tive equations for the case of an elastic material behavior, so-called constitutive variables

are assigned to these contributions which contain the strain and curvature increase:



In the constitutive variables linear contributions (L), products of v~ and Fs-deformations

(F) as well as nonlinear portions in v~ (N) of can be grouped together as follows:

strain increase: vQ~ = ~Q~ + ~Q~ + fQ~ (6)
curvature increase: KQA = ‘Q)J + ‘Q~ + ‘Q)l

For the strain increase, the portions are given as examples:

N
7Q,4 = : (V7AV7,L=7+ V31,V31A)

(7)

3 Approach to Linear and Nonlinear Stability Analyses

To solve the equation (3), the disturbance-induced displacements v~ and their virtual

kinemates tiv~ are described by product equations (k=l, 2, 3) as follows:

N N

J(Q1, e2, t) = ~ V(el,ez) “ T.(t); &#(@,(32,t) = ~ ;k(&, (32). 6T.(t) (8)
(7A) (?a=l)

In _(8) the eigenmodes of the undamped vibration are used as functions ~~, since this

considerably simplifies the solution due to the orthogonalit y charact arist its. The quan-

tities T. represent the unknown time functions of the disturbance-induced motion, while

IV stands for the number of eigenmodes used for the approximation. With regard to a

systematic considerateion of quadratic nonlinearit ies, the examination of high-order pro-

ducts in the disturbance-induced displacements and Fs quantities is not continued. After

consideration of both the Fs and the orthogonality of the eigenmodes, (3) is given as:
N N NN

x{ }~n+d.$.+Tm”:2+~Tk”qmk(t) +~~&T@.k, 06T. =0 (9)
n=l k=l k=l s=l

The nonlinear coefficients ~.ks result from the internal work 8W. Due to the component

representation of the stability equations and the inertial and damping forces in the direc-

tion of the base & of the undeformed state, only rotational nordinearities occur consisting

of inertia and damping; because of minor importance they are not stated. The coefficients

q.k(i!) include reactions and deformations of the Fs as well as directionally unstable loads,

while : are the eigenfrequencies. Since the virtual changes fTn are arbitrary and inde-

pendent of each other, T.” JTn = O and T. = O can be postulated from (9) (n= 1,2, ...N).

3.1 Linear Stability Analysis

In the case of a Fs constant in time the exitation term remains time-invariant and, with

qnk(KO), depends from a load parameter KOalone. Thus, we obtain from (9) a linear time

differential equation system with constant coefficients:



N

T*+d”7~+T~”~2+~T~”~n~(KO)= O ; (n=l,2,..., fV) (lo)
k=l

With T~(t) = an “ ei~t, (i= ~) (10) is transformed into a linear homogeneous equation

system with nontrivial solutions a. # O if the denominator determinant ~N vanishes.

With A) = A2 – i “d~ and Q(KO) = [~.k(~.)] this provides a special eigenvalue problem:

12

[1
w o

det [D+ Q(KO) – A: . E] = O mit: D= “. (11)

0“%
From the eigenvalues ~~ the equation quantities ~ = AR+ is ~z can be calculated in a com-

plex form. While the real part of the-time functions describes a harmonic oscillation with

eia~t, the imagenary part with e–~lt provides an exponential increase of the disturbance-

induced motion in case of a negative AI, characterizing instability. With l? = Re(A~) and

1 = Im(A&) this approach leads to the stability postulate:

R“@–12>0 with the secandary condition: 4R+d2>0 (12)

- In the undamped case (d= O) equation (12) is simplified reading 1 = O und R >0. The

smallest load value K. which does not meet this stability requirement is critical.

For arbitrary fundamental motion states with periodically varying excitation term
M

%ak(f) = %k(~o) + ‘t “ ~fink +%k “ sin ~~~ +&k “ Cos ~~~] (13)
m=l

a system of extended HILL differential equations with periodic coefficients is obtained

from (9) without nonlinear contributions. Here, Kt is the parameter of the load depending

on the time while ~ is a frequency magnitude. Now, in the plane (Kt, 0) there are whole

regions of kinetic instability the boundaries of which can be determined using FOURIER

series with the periods a) T = 27r/L? and b) 22’:

j=2,4,.. j=l,3,..

By comparison of the coefficients this method allows to give two infinite homogeneous

equation systems which can be reduced to finite systems (Jl, J2 # m) [1]. With KOand

~ given, the postulation of ~N = O leads to eigenvalue problems of the form (a = 1, 2):

det [Xa(Ko, 0) – ~t . Za(f2)] = O , .Xa,Z@ : hypa matrices,see.e.g [4] (15)

The smallest Kt provides the decisive boundary of the instability regions.

3.2 Nonlinear Stability Analysis

To perform a nonlinear stability analysis for arbitrary fundamental states, the nonlinear

differential equations T. = O are first transferred into a first order system by introducing



the new variables ~~ = T~ , ~jv+~ = !i!~, (k = 1,2,... IV). When specifying asmalldistur-

bance ~~(ta) , (k = 1,2,... 2iV) for an arbitrary time t., the displacement and velocity of

the structure are disturbed - in accordance with LJAPUNOW - with scaled linear combina-

tions of its eigenmodes. By an incremental numeric integration, ~~(t) can be determined

at any time t and the history of the disturbed motion can thus be approximated.

For a periodically varying Fs - similar to the linear analysis - a trigonometric approach

may be used which, however, combines the periods T and 22’ for determining the vibrat ion
n

‘+ij COS ~amplitudes (T~ = ~k + ~~H1,2,.. [;J sin z ~]). The functions J;. are formed

by changing the constants into the varied quantities J&, J:j and d~j. By substitution

into T~ “ 62” and integration over the maximum period length Z’~.x. = 4T/f2 a nonlinear

algebraic equation system is obtained in &, ~j and ~j which can be solved numerically.

3.3Evaluation of the Eigenmodes and the Fundamental State Quantities

To determine the eigenmodes and eigenfrequencies of arbitrary shell structures it is advi-

sable to use an FE program 5. To calculate the fundamental motion state its deformations

are split up into a quasi-static (index S) and a dynamic (index D) portion according to:

v (&, @2,q = s:(Q1,@2,t) + :: (@l, Q2,t) (16)

In this way, all quantities of the Fs are split up. Similar to the approximation of v~, see

(8), the dynamic portion ;: is represented by series approaches using the eigenmodes.

The quantities ~n~ required to solve (9) and the nonlinear coefficients an~, can then be

determined by numeric differentiation and integration at the nodal points of the FE-mesh.

If only the quasi-static solution is included, the dynamic interaction of the fundamental

state vibration and the disturbance-induced motion is not covered. Thus, the analyses of

parametrically excited vibrations do not provide instability regions originating from the

resonance points of the fundamental state, but only those instability regions which are

assigned to the known frequency ratios 0 = 2~/k, (k = 1,2 ,..., 00) of the parametrically

excited vibration. Moreover, phenomena like the main instabilityy regions6 merging with

the regions of the fundamental vibration cannot be covered (also see [2] and [3]).

4 Example of Application - Parametrically Excited Vibrations of Plates

So far, the explanations given are applicable to arbitrary shell structures. The example

of application given in the following implies a restriction to plates. This means that, with

the use of the relations derived above, the covariant derivations (...) I may be substituted

by partial ones (...)’ and that contributions containing the initial curvature ~~ disappear.

4 For detailed explanations of the described solution methods see [2].

5 For the analyses of the examples given in section 4 the NASTRAN program was used.

6 Such effects have been theoretically examined and experimentally confirmed in [1], too.



The numeric analyses are performed for rectangular steel plates with a length-width-ratio

of a/b = 2 and a periodic load of P(t) = PO+ l’t “ COS($W)acting along one edge.

~1
~1

b

I ‘(11

b

El-

1
P(t) = PO+ Pt. ms (S2t)

e2 e2,

Figure 2 System, boundary conditions and loading.

In addition, it should be noted that at the boundaries @2 = O and @2 = b there is no

support in @-defection. After the quasi-static and dynamic solutions of the Fs have been

found, a periodically varying excitation term qn~ is obtained from equation (13). The

previous static calculation (solution according to 3.1) resulted in a linear buckling load of
- p0,kr,t.b2

= 2.37,which confirms the result given in [4]. Moreover, it could be demonstrated~Z.B

that, in case of a time-invariable load, the system undergoes a ‘static failure’, i.e. an

intersection point of the load-frequency curve and the load axis provides the decisive

critical load. Now, the instabilityy regions for the pulsating load are determined by applying

the method described in paragraph 3.1. For this purpose, the load parameters Kt = pO~r,,

for the time-variable load portion and KO= PO:,,, for the static preload are introduced.

Q
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Figure 3 Instabfity regions for static preload KO = 0.0 (a) and K. = 0.5 (b).

For the incrementally increased excitation frequency 0, the eigenvalue problems (15) for

the periods T and 22’ can now be solved. The resulting critical load values of w can thus

be plotted against the corresponding frequency ratio related to the value twice the first



eigenfrequency of the plate vibration. Figure 3a shows the predominant influence of the

main instability region for the first eigenmode. As expected, the width of the higher-order

instability regions (in Fig. 3a depicted up to the 4th order) decreases with increasing

orders. If damping influenc= are considered, these regions usually vanish completely

(compare Fig. 3a: broken lines), while the main instability region clearly maintains its

influence. Further, it can be recognized that the instability areas meet the frequency

axis at 0 = ~. Since the peaks of the regions are dependent on the eigenfrequencies

of the loaded system, the instability regions are shifted downwards if the calculation is

performed with a static preload (see Fig. 3b: KO= 0.5). Here, again, the results for a

related damping of J = ~ = 0.015 are plotted as a broken line.

Other calculations have~hown that the dynamic interaction between the Fs and the

disturbance-induced motion mentioned in paragraph 3.3 is small enough to be neglected,

so that the inclusion of the quasi-static portion is sufficient. When dealing with para-

metric resonance of general shell structures, however, the interaction has always to be

taken into consideration, because of the vicinity of the Fs and Ns eigenfrequencies. It was

further investigated that the deformations of the Fs are of only minor influence on the

- width of the regions and can thus be neglected. Such deformations can always lead to a

dangerous widening of the instability regions, if the Fs also contains a deformation com-

ponent in the direction of the resulting disturbance-induced motion 7. In general, however,

for parametrically excited vibrations of plates it has to be taken into consideration that

the adjacent eigenfrequencies cause wide instability regions which have to be considered.
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