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Abstract

Using the wave approach, the theoretical prediction of Statistical Energy Analysis plate-to-
plate coupling loss factors is based on calculating the random incidence transmission
coefficient matrix associated with the equivalent infinite line junction. The 4x4 semi-infinite line
wave dynamic stiffness of each plate is used to calculate the transmission coefficient for a
particular angle of incidence; these angle transmission coefficients are then numerically
integrated to obtain the required random incidence transmission coefficient.
Many line connections in real engineering structures are, in fact, a series of equally spaced
point connections. The spacing of these points is often neither large nor small in comparison to
structural wavelengths. Furthermore each connection point may itself exhibit dynamic
behaviour such as when point isolators are employed. This paper presents a theoretical solution
to this problem based on the Fourier decomposition of the connection line into a series of true
line connections each with a different trace wavenumber. The cross transfer matrix of a single
point connection is then incorporated into the theory to model its dynamic behaviour.
Experimental results are then compared with this theory using a two-plate assembly with an
I-sectioned connecting beam and with various numbers and types of point connectors.



1 Introduction

Predictive SEA clearly depends on the calculation of the coupling loss factors between the
chosen subsystems, and for plate assemblies these subsystems are usually chosen to correspond
to the different traveling wavetypes that each plate can support. For a flat isotropic plate this
implies three subsystems to model the bending waves, the in-plane compression waves and the
in-plane shear waves.

By adopting the wave approach, as against the more traditional modal approach, it can be
shown that for plates a given SEA coupling loss factor, TId, is related to the appropriate

‘infiite’ random incident transmission coefficien~ ~~a,through the formula

(1)

where w is the circular frequency, k= and n. are respectively the wavenumber and modal

density of wavetype a, and L is the length of the line connection.

An ‘infinite’ transriission coefficient is simply that associated with the canonical junction of
infinite extent (that is where all plates are assumed semi-infinite). The procedure to calculate
?~~is first to calculate the angle dependent transmission coefficient z~.(e. ), where e= is the

- angle of incidence with respect to the normal, and then to numerically integrate this using

(2)

Assuming all plates are thin, ilat and isotropic and that all connecting beams can be modelled
using Timoshenko beam theory the problem was solved for a general geometry junction by
Langley and Heron (1990). Recently Heron (1997) used the concept of a Iinewave impedance,
to extend the theory to include strip plates (to better model thin sectioned beams) and this
extended theory has been shown to exhibit very good agreement with experimental results:
Heron (1995), Monger et al (1997). The theory assumes a simple line connection between all
the elements at the line junction (semi-infinite plates, irdlnite strip plates and infinite beams).
Mathematically this implies, for a given frequency w and incident trace wavenumber k, a

dependency of e-ke- en the space variable x (parallel to the line junction) and on the time
variable t.

The aim herein is to extend this theory to the case where a plate is attached, possibly by
isolators, to the other elements at the junction by a discrete set of points. From an SEA
standpoint, such a theory could be developed based upon one of two assumptions. Either it
could be assumed that the point connections are randomly spaced, or it could be assumed that
that the point connections are equally spaced. The former is a simple extension of SEA point
connection theory (multiplying by the number of point connections). Unfortunately randomly
spaced connections are not normally used in the engineering world and so the more
complicated assumption of equally spaced point connections must be studied. This case is
iimdarnentally more complex because it has to be modelled using an extension to line, rather
than point, connection theory. This extension to SEA theory is described below.



2 Point and line variables

Let the six point force variables be given by the column vector f such that

f’ =( LJ$J@xmy,mz) (3)

where the superscript T denotes transposition, and where (~X,fy,fz)represent the point forces

and (mx,my, q ) represent the point moments. Now let the four line force variables along a line

parallel to the x axis be given by the column vector ~ such that

~ =(t$t?x,.li) (4)

The vector ~ is a column vector of forces/moments per unit length. Assuming that over a
small enough length 3X the line forces do not significantly vary, and choosing the line velocity
variables such that

?= = (—ik-%=,Vz,Wz) (5)

then the force variables are related by

k= Yf (6)

~ where the 4 x 6 matrix Y is given by
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(7)

‘Furthermore the point velocity vector v and the line velocity vector ? are related through the
equation

v =y% (8)

where the superscript H denotes complex conjugate transposition.

3 Fourier force decomposition

jigure 1 A comb of teeth

For clarity of presentation the comections will be referred to as teeth and the assumed infinite
and equally spaced line of teeth will be referred to as a comb.

In order to combine current line junction theory with a theory for these comb connections, it is
necessary to model the point forces at the teeth in terms of line forces. Letting the incident



wave (which generates the junction force) have a trace wavenumber ktiC,the point forces can

be modelled using a function of the form

(9)

where 2ZV+1is the number of digitised points per tooth spacing (five in figure 1) and g is the
tooth separation distance.

Equation 9 has been chosen because
+&.

f(x) = e ata tcmth

o elsewhere
(lo)

which meets the twin requirements of zero net force at points between the teeth and a net
tooth force with the correct dependency on x.

Hence the component vector line force, ~ associated with a trace wavenumber kl is related to

the total tooth vector point force, fp, through equation 6, such that

g m) =Vf(k)f, (11)

4 Governing equations for the line junction

With the exception of the comb connection, the line forces and velocities for all 21V+l trace
wavenumbers implied by equation 9 are independent from each other due to the form of
equation 9. Thus, for each kl ,say, it is possible to write

(12)

where ~1(kl) is the usual junction line wave impedance ignoring the comb, see Heron (1997).

F1(kl) is the junction line wave velocity, ~(k,)is the junction line wave force due to the comb

reactions, and Fl(kO) is the external junction line wave force due to the incident wave; the latter

will bezero forall J#O.

AU teeth are assumed to be identical. The velocity Vp and force fP on the two ends of a single

tooth are related through the standard 12x 12 cross point impedance Zp of the tooth such

that

Z,vp= f, (13)

The velocity at a tooth, VP, is related to the line wave velocity components V1(kl) through the

equation

(14)

because at the teeth all the components are in phase through equation 9.

Equations 11, 12, 13 and 14 forma closed set of equations for Vp, &, ~l(kl) and @,), given

Sr(kO). In practice it has been found preferable to use the cross transfer matrix for a tooth

instead of the cross impedance matrix Zp. Furthermore it has been found that the equations



are best solved by first computing VPand fP (by eliminating fl (kl) and ~(k[)from equations

11, 12 and 14)and subsequently calculating ~1(kl) and hence the line junction transmission

matrix.

Bosmans and Vermeir (1996 and 1997) developed a more extensive theory to include the ftite
length of the teeth but only for a much simplified stiffhess model for each tooth. However it
would clearly be possible to merge these two closely related theories should this become
necessary.

5 The experimental assembly

pointConne#iom

\

jigure 2 Basic assembly

A diagram of the basic two plate assembly is shown in figure 2; two flat isotropic aluminium
plates were connected together using an alurniniurn I-beam. The 3rnm plate had a length of

“ 1.5m and a width of 0.825m, and the 4mm plate had a length of lm and a width of 0.825m.
Da&ping treatment was applied to both plates to give an estimated bending energy darnping
value of 1.570 for both plates over all fi_equencies; this value was used in the theoretical
models.

The 3mm plate was always directly connected to the I-beam using 33 bolts with a bolt spacing
‘of 25mm. The 4mm plate was connected by a variable number of equally spaced ‘sleeved’
bolts. Each plate was mechanically excited at 5 randomly chosen positions and the response of
each plate was measured using 5 randomly positioned miniature accelerometers. The input

. drive point acceleration level was measured.

6 Small spacer results

A single ‘small spacer tooth’ comprised a steel bolt, a washer, and an alurninium sleeve. This
‘tooth’ was modelled as two beams in parallel (an inner solid steel cylinder with a diameter of
5mm and a height of 7.5rnm, and an outer hollow aluminium cylinder with an outer diameter of
8mm, an inner diameter of 5rnrn and a height of 7.5rnm) sandwiched between the 4mm plate
and the I-beam. The steel bolt head (diameter 8mrn, height 5mm) and the steel washer
(diameter lornrn, height lmm) were modelled as rigid masses and ‘added’ to the tooth at a
position just above the 4mm plate.

The results from the 9 point connection case, which corresponds to a tooth spacing of 100mm,
are shown in figure 3. The mean square spatially averaged velocity response of the 4mm plate
due to forcing on the 3rnm plate has been normalised using the drive point velocity. The
experimental results are shown as thin lines; the two outer dotted lines are the 90% confidence
limits based on the five force and five response measurements. All the experimental data were
obtained using a frequency bandwidth of 100Hz.



The theory is plotted for different values of the parameter N. The number of trace
wavenumbers within a model is 2N+ 1; that is the sum over wavenumber components is taken
from -N to +N. As can be seen the theory is fully convergent even at N=l, and the agreement
between theory and experiment is good. All theoretical results have been calculated at 500Hz
intervals and no frequency averaging has been used. The I-beam was modelled using infinite

theory,s~ Heron (1997).
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jigure 3 Smull spacer with 9point connections
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figure 4 Smull spacer with 3 point connections

Figure 4 shows the results when the number of teeth is reduced iiom 9 to 3. In both cases the
two outer teeth are kept at a distance of 12.5rnm from the end of the connection line, thus end
effects, ignored in the theory, could play a significant role at the lower frequencies; particularly
with regard to the 3 point connection case.



Good agreement between the theoretical predictions and the experimental results is shown.
Indeed the agreement is remarkably good here since intuitively the 3 point connection case was
not expected to be modelled accurately by a theory based on an infinite line of equally spaced
points.

7 Large spacer results
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jigure 5 Lurge spacer with 9point connections
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figure 6 Large spacer with 3 point connections

Figures 5 and 6 are the results for a large spacer, with 9 and 3 point comections. The only
difference between the small and large spacers was the height and outer diameter of the sleeves
which were both increased to 15rnm. As with the small spacer results, good agreement has
been obtained between the theoretical predictions and the experimental results.



8 Discussion

Overall, the comparison between the experimental results and the theoretical predictions is
very good. The small discrepancies at the lower frequencies can be attributed to end effects
which are not modelled within the theory.

TMSis an important step forward for predictive SEA because many apparent line junctions are
often, in reality, a series of point connections and this new theory can be used to model such
junctions accurately. Examples are a line of rivets in an aircraft fuselage assembly, or a line of
nails connecting a plaster board to a wooden batten. The theory could even be used when there
are just two connections, such as at a door hinge line; here we would be modelling the infiite
extension of the door and hinges with the hinge spacing freed, a not unreasonable model. There
is also some evidence, see Monger et al (1997), that when a single plate is riveted across a
centre line to create two plates, simple line connection theory is inaccurate at the higher
frequencies and the theory developed herein should solve this problem.

9 conclusions

A mathematical model has been developed for the complex joints associated with line
connections which are in fact a series of equally spaced point connections, where each point or
‘tooth’ is a fidly dynamic component. The theory makes no assumption about the ratio of the
plate wavelength to the point separation distance, nor about the particular tooth design.

This development is a sigtilcant extension to existing SEA theory with the aim of allowing a
general line junction comprising semi-infiite plates, infiite strip plates, beams and now
equally spaced point connections to be modelled.

Very good agreement has been obtained between the experimental results from some specially
designed two-plate assemblies and the predictions using this new theory.
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