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ABSTRACT
In this paper, the authors present a new experimental spatial matrix identification method
that they have been developing. The method is to identify a set of the mass, damping and
stiffness matrices that can represent the dynamic characteristics of an objective structure
from experimental FRFs. The theory of the method is explained at f~st. Then, the result of
an identification of a basic frame structure, which is made of L-shaped cross-sectional steel
components, under the free-free boundary condition is presented. Both bending vibration
modes and torsional vibration modes are located in the frequency range of the identification.
The dynamic characteristics of the specimen under a different boundary condition me estimated
from the previously identified set of spatial matrices, and compared with experimental results
to verify the practical validity and usefulness of the method.

1. INTRODUCTION
Under the assumption of viscous darnping, the equations of motion are expressed as

[M]{x) + [C](x) + [K](x)= {f} (1)

where [M], [c] and [K] are the mass matrix, the viscous damping matrix and the stiffness
matrix, respectively. And, {x) and {~} are the displacement vector and the applied force
vector, respectively.

They say that it will be difficult to identify a set of spatial matrices, that can represent the
dynamic characteristics up to a high frequency of interest with respect to mechanical
structures, from experimental FRFs. Then, in the field of experimental approaches, modal
parameters are identified from FRFs generally. Many methods [1] were proposed to identify



modal parameters from FRFs. As examples of challenges to identify spatial matrices, there
are papers by Leuridan [2], Roemer [3], Minas [4], Peterson [5], and Okuma [6], etc. From
the practical viewpoint of structural dynamic analysis, it will be generally required to identify
a set of spatial matrices whose number of degrees of freedom is much larger than the number
of natural modes in the frequency range of identification. The set of spatial matrices is
required the capability to represent the dynamic characteristics of the specimen under even
different boundary conditions in the same frequency range. The theones of those papers will
not be available for the identification under these practical requirements.

The theory of this paper can identify a set of spatial matrices that represent the dynamic
characteristics of objective structures under the practical situation. In the next chapter, the
theory is explained. In the 3rd chapter, a set of spatial matrices is identified with experimental
FRFs of 22 measurement points with respect to a frame structure under the free-free
boundary condition. The validity of the theory is verified by estimating FRFs between any
two measurement points, which are not used in the identification, and by predictions of the
dynamic characteristics under a different boundary condition.

2. THEORY
The theory is explained briefly due to the limit of pages here. On vibration measurement,

measure or determine the coordinates of all measurement points as well as FRFs. Because
they are required as one of input data for the identification.

At first, create a physical comectivity , which is called “physical modeling”, among the
measurement points by yourself. By this definition, constraint equations can be computed
with respect to the elements of spatial matrices. According to the principle that any mass
matrix with any number of degrees of freedom must be transformed into a rigid body mass
matrix, Eq.(2) can be formulated as

[Yqp][q=[%kf] (2)

where [W]is a set of mutually independent rigid motion modes that can be formulated with
the coordinates of measurement points. The element formation of any rigid body mass
matrix is well known as.
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(Xg , Y,, z,) : Coordinates of Center of Gravity

Therefore, some constraint equations regarding the mass matrix will be formulated by Eq.(2).



With respect to the stiffness matrix, Eq.(4) can be formulated according to the principle

that no stress is generated in all parts of a structure under any rigid body motion. So can the
constraint equations regarding the viscous damping matrix be.

[K][Y] = [o] (4)

where [0] : zero matrix

Next, determine an identification frequency range. The frequency range must include the
resonant modes from the first order. Identify the undamped natural frequencies locating in
the identification frequency range, the associating natural modes and modal damping ratios
approximately by observing FRFs. It is useful to use MIF ( Mode Indicator Function [7]) to
estimate natural frequencies and modal damping ratios [8] in the cases of not so heavy
damping.

Now, initial values of elements of spatial matrices are set by random numbers under
subject to the constraint equations because of a very quick way. Then, the initial mass and
stiffness matrices are improved to become a positive definite matrix and a semi-positive
definite matrix respectively by the sensitivity analysis of eigenvalues with respect to the
elements of the matrices. Negative eigenvalues should become positive numbers. The sensitivity
analysis of diagonal elements of spatial matrices to become large positive numbers and

- non-diagonal elements to approach zero assists the achievement. Next, the undamped natural
frequencies, calculated by Eq.(5), of interested orders in the identification ffequency range
are controlled to correspond with the targets by the sensitivity analysis of undamped natural
frequencies.

([K1-Q2[~l){o=(0} (5)

where { # }: natural mode
a: natural angular frequency

The natural frequencies must be controlled satisfactorily. If not, the “physical modeling”
should be considered unacceptable. When the correspondence of all natural frequencies of
interest is satisfied, their associating natural modes are improved to correspond with the
targets by the sensitivity analysis of natural modes. The feedback route is necessary for the
computational process to keep the matrices positive definite ones here. When both natural
frequencies and natural modes of interest correspond with their targets satisfactorily, move
forward to improve the viscous darnping matrix. If not, bad corresponding natural modes
calculated by Eq.(5) are replaced by their target vectors coercively under the treatment of the
normalization of the vectors with respect to the mass matrix. Let us denote the resultant
natural mode matrix by [d]. Then, the mass and stiffness matrices are modified by Eq.(6).
The spatial matrices become full coefficient matrices, respectively in this case.

[M] = ([@] ’~l[I][@l-l

[K] = ([aY]T)_’[Q’][&]-’ (6)

where [ @’]: natural mode matrix into suitable columns of which target mode
vectors are substituted



Now, here is the process to improve the viscous damping matrix. At first, the viscous
damping matrix is created by copying the resultant stiffness matrix. Then, a scalar coefficient
is multiplied into the damping matrix to satisfy the equality of both sides of Eq.(6) as well as
possible with respect to the eigenvalues of interested orders calculated by Eq.(8). Furthermore,
by the sensitivity analysis of eigenvalues with respect to elements of the viscous darnping
matrix, the viscous damping matrix is improved to satisfy the relation of Eq.(7) better
regarding the interested orders of eigenvalues of Eq.(8) under the constraint that the associating
natural modes keep correspondence well with those of Eq.(5).

(7)

where n: the number of resonant modes of interest in the identification frequency range

([WM)W= w (8)

When the control can be achieved, go forward to the last process. If not, bad corresponding
eigenvalues of interested orders are replaced by the values calculated by the equation in the
right hand side of Eq.(7). In this case, the viscous damping matrix will become a full
coefficient matrix.

On the last process, the most suitable real number is multiplied to all spatial matrices to
make FRFs calculated from the set of the spatial matrices fit with experimental FRFs as well
as possible at f~st. Then, the set of spatial matrices is improved to fit FRFs much better by a
mathematical optimization method. The authors currently utilize the steepest descent method
for this process basically.

It should be noted here that a set of spatial matrices identified is not the unique solution of
the dynamics of an objective structure because of a system identification from experimental
FRFs of a single point excitation and the limit of the frequency range. However, the set of
spatial matrices can represent the dynamic characteristics of an objective structure in the
identification frequency range even under changing the boundary condition and/or connecting
some additional masses, etc., approximately. Therefore, they can be used for many kinds of
practical analyses and simulations.

3. BASIC VERIFICATION
The practical validity of the theory is verified basically by an application to a frame

structure made of L-shaped cross-sectional steel components as shown in Fig. 1. By applying
a hammering force at the measurement point No. 1, FRFs in the normal direction of the
structure plane are measured at 22 measurement points (#l -4#22)under the free-free boundary
condition, which is realized by suspending the structure with 4 rubber strings. Then, the
number of degrees of freedom of spatial matrices is 22. The identification frequency range is
set from 5 Hz up to 180 Hz. There are locating the first four resonant modes in the ftequency
range. The resonant modes are the first torsional mode at about 14 Hz, the fist bending mode
at about 86 Hz, the second torsional mode at about 115 Hz and the second bending mode at
177 Hz, respectively. It should be considered in this case that there are three independent
rigid motion modes at zero Hz.

Fig.2 shows an example of fitting of FRFs between the experimental FRFs and the
calculation from the set of spatial matrices identified. Table 1 lists all the natural frequencies
and their associating modal damping ratios obtained from the set of spatial matrices. The



first three zero natural frequencies mean the rigid motion modes. The values in “Damping
ratio” associating to those rigid motion modes do not mean the modal darnping ratios but the
real parts of eigenvalues. It is recognized that the three modes have no damping. The values
from the fourth to the seventh orders are the parameters of the resonant modes locating in the
identification frequency range. All other residual natural frequencies can be controlled to
locate at the higher frequencies than the identification frequency range by the proposed
method. Fig.3 shows the convergence of fitness of FRFs on the last process of the theory.
The Solid line denotes the convergence by changing only the stiffness matrix, only the mass
matrix, only the damping matrix and all of the matrices together one after the other on
iterations. The dotted line denotes the convergence from the same initial matrices by changing
all of the spatial matrices simultaneously on every iteration.

The fwst verification of the validity of the identification will be to show good fitness of
FRFs that are not input in the identification. Fig.4 shows an example of them. The driving
point and the response point are the measurement point NO. 11 and NO. 14, respectively. As
shown in Fig.4, the FRFs between any two measurement points can be simulated from the
set of the spatial matrices.

The second verification will be to show good predictions of the dynamics of the objective
structure under a different boundary condition. Fig.5 shows an example of predicted FRFs of
the structure under clamping four measurement points (#10, #l 1, #21, #22). Namely, the
structure looks like a cantilever. The analysis is very easy because of using a set of spatial
matrices. Four resonant vibration modes can be observed at about 12Hz, 20Hz, 90Hz and
112Hz on the experimental FRF. Table2 lists all natural frequencies calculated with the set
of the spatial matrices under the boundary condition. From Fig.5 and Table2, it can be
understood that the prediction is practically acceptable and that the method is practically
valid. If you try to predict the dynamics of the same situation by the experimental modal
analysis, you have to prepare three sets of FRFs by changing excitation locations [9], or
prepare the rigid body properties by other means.

As the third verification, the rigid body properties calculated from the identified mass
matrix are listed in Table 3 together with those by measurements and manually simple
estimations. The quantity of mass and the center of gravity are identified from the mass
matrix with the practically acceptable accuracy.

By the above mentioned verifications, it will be understood that the identification method
presented in this paper possesses the practical validity and usefulness basically to identify a
set of spatial matrices.

4. CONCLUSIONS
The authors have presented the newest theory of the experimental spatial matrix identification

method that they have been developing. By an identification and basic verifications regarding
an actual frame structure, they have demonstrated the practical validity and usefulness of the
method.
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Fig. 1 A Frame Structure as Specimen
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Tablel Natural Frequencies and Dampings
calculated from Identified Matrices

‘my Z:W - Nsnual
order %&s

Damping

[Hz]
Ratios

- 4 *

1 0 0 12 477.3 0.0453

2 0.0 0 13 494.9 0.0416

3 0 -0.0001 14 523.0 0.0532
—

4 13.8 0.0288 15 535.1 0.0475

5 86.4 0.0071 16 566.5 0.0609

6 114.0 0.0126 17 586.8 0.0643

7 176.6 0.0048 18 594.7 0.0605
—

8 223.5 0.0348 19 618.1 0.0676

9 281.6 0.0211 20 626.8 0.0706

10 400.3 0.0451 21 674.8 00704

11 447.1 0.0393 22 737.1 0.06%
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Table2 Predicted Natural Frequencies and Dampingsof
Structure under a Different boundarv Condition

Natural
D&r

Damping - Natursl
Flu&s ~

Dsqnng
Ratios Ratios

—

1 15.1 0.0424 10 478.8 0.0503

2 17.5 0.0092 11 508.6 0.0541

3 92.8 0.0048 12 520.3 0.0633

4 116.2 0.0084 13 578.1 0.0610
— I

5 188.7 0.0197 14 585.7 0.0418

6 265.8 0.0059 15 603.5 0.0696

7 290.2 0.0257 16 621.2 0.0701

8 418.8 0.0421 17 667.7 0.0697

9 444.5 0.0465 18 736.8 0.0644
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