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ABSTRACT

Thermal expansion, moisture expansion (swelling) and elastic displacements may be
analyzed independently for static or quasi-static loads and slowly varying temperature or
moisture inputs. In that case displacements produced by Fourier heat conduction and the
analogous Fick moisture transport maybe uncoupled from elastic displacements. On the
other hand, in hydroscopic materials, due to the Soret and Dufour effects cross-coupling
takes place when either of these inputs: thermal, hydroscopic and mechanical, are applied
at a high rate.

Using the equations of Thermo-HygreElasticity, the problem of a vibrating rod im- -
mersed in an environment with given temperature and mositure content is solved. For
comparison the stress distributions due to the coupled inputs as well as due to uncoupled
inputs will be calculated.

1. INTRODUCTION

The state of stress in hydroscopic elastic materials is affected by moisture expansion
in addition to thermal and mechanical loads.

Under static and slowly varying temperature, moisture content, and load, the pa-
rameters, such as coefficients of expansions, conductivityy, absorivity, moduli of elasticity,
etc. are inter-dependent, but the equations of heat transfer, moisture transport and
equilibrium are uncoupled.

t Ttis paper is dedicated to Professor Franz Ziegler of the Technical University of
Vienna, Austria, on the occasion of his 60th birthday.



Where either of these inputs is applied at a high rate, the parameters may be con-
sidered invarient, but the equations of motion are coupled.

The state of stress in an infinite rod immersed in water with a given temperature and
subjected to axial vibrations will be analyzed. The problem has practical significance for
bridge piers undergoing trafhc induced stresses, off-shore drilling towers and drill strings,
submerged piles, etc.

Because the effects are most significant in Thermo-Hygr&Elastic (THE) materials
such as concrete, timber and composites, a uniaxially reinforced graphite epoxy rod is
examined.

The indicated coupled effects require that Hook’s law be combined with Fourier’s heat
conduction equations and Fick’s, analogous, moisture diffusion relations with Soret’s and
Dufour’s cross-coupling of the latter two.

As a result the generalized equations of motion becometl-5J:
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Here, ui, T and m are the displacement, temperature difference and moisture concentra-
tion; p and A Lad constants; p the denisty; bi the body force; Dm, DT, #m and ~
the moisture diffusivity, the temperature diffusivity and the cross-coupled diffusivities,
respectively; ~ = (3J + 2p)crzI and ~m = (3A + 2P)~m where aT and ~m are coefficients
of thermal and moisture expansions; T, c, km, To and m. are the specific heat, moisture
conductivity, temperature and moisture concentration in the natural state; the dot des-
ignates material time derivatives, and the comma space derivatives.

2.

w.

VIBRATIONS OF AN INFINITE ROD

An infinite rod, presented in Fig. 1, is subjected to oscillating loads with frequency,

The generalized equations of motion, Eqs. 1.1-1.3 involve the cross-coupling effects
of moisture and temperature. The solution of these equations is extremely complicated.
To make the problem tractable, only the coupled effects of load and temperature or load
and moisture concentration will here be considered.

Because of the analogy between heat-transfer and moisture transfer, either of these
variables will be denoted by @ and the three generalized equations will be reduced to:

d~,ii – ~ – lGUj,j = O (2.3)



where the body force, I)i, is neglected, q = (3J + 2p)a4. J the diffusivity and K = TOq/pc
(p = density, c = heat or moisture capacity) with ad the coefficient of expansion, for
either temperature or moisture.

The displacement components UZand u, will be harmonic functions with frequency
w and wave number <:

‘z(Z, r, t) = fz(r)~i(Cz-~t) (2.4)

ur(z, r, t) = fr(r)ei(Cz-WtJ (2.5)

and due to axial symmetry, ue = O.

The coupled temperature or moisture is also a function of the frequency and wave
number

4(2, r, t) = +0 + f~(t)ei(cz-Wt) (2.6)

with q50the stress free temperature or moisture concentration of the porous rod. In
the case of moisture concentration, under the application of the harmonic load, voids
are periodically opened and closed resulting in variable moisture content, liquid being
pumped into and out of the surrounding liquid.

The solution
imaginary parts.

of the problem is in terms of complex Bessel functions with real and

Uz = —e;(@~~)aJ1 (ra)A —iei(~z-Wt)(Jl (r@)B (2.7)

and

where

Ur = ie i(~z-@)~Jo(ra)A + ei(~z-wt)@Jo(rf?)B (2.8)

~ = ei(~z-wt)Jo(r~)c (2.9)

*- CV?’=$-?~2 = (cy)2 (2.10)

with c~ and C2the uncoupled dilatational and shear wave velocities, respectively(6)

~c7)2 (A+ 2p) , ~ p= =— (2.11)
P P

and C the amplitude of the harmonic temperature or moisture concentration.

c=–
i(cx’w + ~2WK)A

(2.12)
–iw + CU26+ [26

A and B are artibrary constants solved from boundary conditions on stresses.



The coupled dilatational wave velocity becomes
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C2 is not tiected by coupling.

The stress components are derived from displacement equations. In the uncoupled
C= ~rr, Coo, azz and Orz are:

(# = —
[
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C7~e= -A ~ (~2 + <2) Jo(cm) + 2ap;J@r)]

– 2iBp~:J1(/?r) (2.15)

0“ =22 –A [a2 + (A + 2p)~2] Jo(cm) + 2iB/?p~Jo(~r) (2.16)

U:z = –2iAcA~J1(cw) – B(P2 – ~2)AJ1(Br) (2.17)

with

B“ = _&?l

Cyz
(2.18)

C~, = -((J +2p)cr2 +~~’) Jo(aro)+2crp~J1(cwo) (2.19)

All other stress components are zero and on the boundary a,,(ro) = a,z(ro) = O.

For the coupled case the four non-zero stress components are given as

~rr = ~~r + (3J + 2P)@$fj (2.21)

fJrr = ~~r + (3A + 2P)~4# (2.22)

Cofl= aye + (3J + 2@#?5 (2.23)

U*Z= a;e + (3A + 2p)cr4fj (2.24)

with
# = CJo(ar) (2.25)



and the amplitude C is the same as Eq. 2.12 using B = – *A

Cll = c;~ + C(3A + 2p)cY4Jo(crr)

C12 is the same as in Eq. 2.14.

3. A NUMERICAL EXAMPLE

in the tTuterms

(2.25)

The coupled stress distribution in an isotropic rod with an outer radius r. = O.lm,
subjected to harmcmic oscillations and a given temperature field is presented. The rele-
vant thermal and mechanical parameters are as follows:

Modulus of elasticity E = 6.4 GPA

Poisson’s ratio v = .23

Density P = 1590 kg/m3

Thermal coeff. of expansion a~ = 31.3 x 10-6 l/cO

Specific Heat c = 800 m2/sec2K0

- Diffusivity J = 2.57 x 10-7 m2/sec

Temperature & = 310K0

While only a thermal problem is presented, an analogous hygr~elastic rod may be
examined if the required hydroscopic parameters are used.

The stress components, as functions of the radial coordinates are plotted in Fig. 2.
for u = 2007r rad/sec. They are presented in Fig. 3 versus excitation frequencies, w
varying between O and 200 n at the outer radius of the rod.

It is seen that coupling results in variations similar to those produced by damp-
ing. These effects are small in the present case but would be more significant for larger
coefficients of thermal expansion.

4. CONCLUSIONS

The coupled equations of motion were presented for thermo-hygr~elastic materials.
The general problem has been simplified by neglecting the coupling effects of temperature
and moisture concentration. Only those of dynamic load and temperature or dynamic
load and moisture were considered.

Displacements and stress components were analyzed in an infinity long vibrating rod
subjected to a given environment. The effects of coupling on stresses were presented as
functions of the radial coordinate and of frequency.
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Fig.1. Configuration of the rod.
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Fig. 2. Variations of uncoupled and coupled
stress amplitudes as functions of
radial distance.
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Fig. 3. Variations of uncoupled and coupled
stress amplitudes as functions of
radial distance.
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