
FIFTH INTERNATIONAL CONGRESS ON SOUND AND VIBRATION

DECEMBER 15-18, 1997
ADELAIDE, SOUTH AUSTRALIA

THE EFFECTIVENESS OF SPARSE RANDOM ARRAYS
FOR UNDERWATER ACOUSTIC IMAGING

David G. Blair, Jim Thompson and Stuart Anstee

Maritime Operations Division, Defence Science and Technology Organisation,
PO Box 44, Pyrrnont, NSW 2009

-It is intended to produce an underwater acoustic imaging system with three-dimensional
images of resolution around 1 mm at 1 m range. For this purpose, sparse random arrays

have considerable cost and feasibility advantages overfilled arrays. There is no degradation
of beamwidth, while the average distant sidelobe level (ADSL) can be reduced to a level
expected to be satisfactory for imaging surjaces such as sea mines, although unsatisfactory
for imaging continua such as human tissue.

We have simulated the imaging of point targets by random arrays of N elements. The
simulation uses exact path lengths in the near field. Good range resolution is obtained
through either a short toneburst or a cross-correlated chirped signal. It is confirmed that, as
the array is made more sparse, the ADSL rises. For broadband signals, the ADSL is found to
be markedly lower than the monofrequency value. The use of partially random arrays,

constructed out of identical subarrays for ease of manufacture but oriented randomly, leads
to an appreciable degradation in ADSL. For example, a system of 100 square subarrays
with four subarray orientations resulted in an ADSL penalty of 5 dB.

1. INTRODUCTION; THE RANDOM ARRAY

DSTO, along with its industrial partners, Thomson Marconi Sonar and CSIRO, is
working to produce an underwater acoustic camera which would yield three-dimensional
(3-D) images having an angular and range resolution of 1 mm per m of range. It is intended
to use a broadband correlated chirp, centred on a frequency of roughly 3 MHz, a broad-beam
omnidirectional transmitter and a sparse, random planar receiving array. ‘Sparse’ here
means sparse compared to a ‘filled’ array, the latter being a regular array with just sufficient
elements to avoid grating lobes. A filled square array has an element spacing of A /2, where
2 is the central wavelength. Theoretical results confirmed by experiment (Steinberg 1976,
Steinberg and Subbaram 1991) show that, despite its sparseness, such an array performs
surprisingly well. The beamwidth of the sparse array depends almost entirely on the overall



aperture and is practically the same as for the filled may. The penalty for using a sparse
array consists in a raised value of the average distant sidelobe level (ADSL) which, for a
monofrequency (continuous-wave-cw) signal, is independent of angular displacement and
equal to I/N, where N is the number of elements. The distant sidelobes derive their

importance as follows: for a given voxel, all the scatterers at the same range as that voxel,

including those at a large angular displacement from it, make a contribution to that voxel
through the sidelobes. The contributions from the distant lobes combine to give a

background fog or ‘clutter.’
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Figure 1. Only elements from A to B contribute to
the image at P. Shown here is the reciprocal
configuration to the one normally of interest.

For imaging targets such as
sea mines, in which the scattering
of ultrasound is overwhelmingly
from su~aces, analyses have
concluded that the ADSL can be
reduced to a satisfactory level by
increasing the number of
elements N to a moderate value
(say 3000 to 4000). The analysis
involves noting that, given any
voxel, the troublesome scatterers
contributing to the intensity of
that voxel lie on the curve of
intersection of the mine surface
with the surface of the sphere
centred on the array centre and
passing through the voxel. The
number of troublesome scatterers
can be can be estimated and can
be compensated for by making N
large enough.

On the other hand, for medical imaging, it is not expected that a random array with the
same high degree of sparseness would be satisfactory, for the following reason. In tissue, the
scatterers are spread throughout a volume. The intersection with the spherical surface is now

that surface itself. Since the intersection is a surface, not a curve, the number of troublesome
scatterers becomes much larger.

We have developed a computer program, POINTSPR, to assist in the design of the array
system. The program handles a wide variety of planar arrays, using near-field bearnforming
to produce either 2-D or 1-D slices through the 3-D image.

2. BEAMFORMING

For later use, we give here the essential equations for beamforming and give also a
graphical method useful in understanding some properties.

If an active sonar array with an omnidirectional point transmitter insonifies a region
containing point scatterers, then the voltage at the nth sensor element of the array is

En(t)=~~ [s t–c-’(pjt +pjn
j PjtPjn

)] (1)

Here a j is the scattering strength of the jth point scatterer, pj, and pj~ are the distance of

that scatterer from the transmitter and nth element respectively, s(t) is the transmitted pulse,



taken to be centred on t=O, c is the sound speed, and constant factors in En(t) have been

omitted. Our simulations assume an array of elements in the xy plane, a single point

scatterer, a point transmitter at the origin and a pulse s that is either a short toneburst or a
correlated, rectangular-envelope, linear chirp. Beamforming appropriate to a short toneburst
is performed thus:

A(r) = ~n WnEn[C-’ (P,, + P,.)] (2)

(Knudsen 1989). Here A(r) is the ‘radio-frequency’ image amplitude at the position r (the

‘image point ‘), the w. are shading weights, and p, ~ and p,. are the distance of r from the

transmitter and the rzth element respectively. The total image amplitude A,(r) is essentially

an envelope of A(r). Crosscorrelation or dechirping is described by Rihaczek (1985). The

dechirped response can be calculated by replacing s(t) by its autocorrelation function,

Simulations below for short and effectively short pulses yield novel results. An
approximate but easily-understood explanation of some of these results is derived as follows.
First, the incoming spherical waves from a scatterer are nearly plane if the range of the
scatterer is greater than about L2/ A, where L is the aperture size (the length in the case of a
square or linear artay). For simplicity we assume the scatterer to be at such a range; that is,
to be in the ‘far field’ of the array (Steinberg 1976). Then for an unweighed array (w.= 1),
omitting the slowly-varying factors that precedes in Eqn (1), we have

A(r) = ~~s{c-’[2(r - r,)- X.(sin@- sin@O)]} (3)

For ease of presentation we consider here a linear array along the x axis, Xn is the nth element
position and # is the angle that the vector r to the image point P, lying in the xz plane, makes

with the z direction (broadside). The subscript O refers to the single target at T. We now
consider the case $=0, i.e. the image point is held fixed at @=0 while the target’s position is

‘varied. This is the reciprocal configuration to what normally interests us (target fixed, image
point varying); but it is well known that the two intensity beam patterns the result are the
same. Then for a pulse of duration Z the nth element will contribute only if

-T/2 <c-1[2(r–ro)+ Xnsin@o]< T/2 (4)

That is (Fig. 1), the element must lie in the slice between two parallel planes. These planes
actually represent the beginning and end of the pulse that was transmitted and then scattered
from the target, the wavefronts in the neighbourhood of the array being approximately plane.
We consider the transverse beam pattern (P and T at the same range) by putting r=ro in (4);
this makes the centre of the slice pass through the origin. Clearly some elements of the array
fail to contribute if

c-’(L/2)sin@0 >T/2, i.e. L sin $0 > CT (5)

The normal, i.e. nonreciprocal situation (target fixed at @O=0) is represented in Fig. 1 by

interchanging P and T and replacing @Oby @J. Regarding results, the normal situation is

described by replacing @Oby – @ in (4) ad (5) (or equiv~ently, by + @ in Eqn 5). From

now on we shall consider this done.
The above results are easily generalised to a planar array (XYplane). Provided that the

target and image point are in the xz plane, Eqn (3) holds. The array is effectively projected
onto the x axis. Likewise (4) holds. In (5), L must be interpreted as the length of the array
after projection onto the x axis; it is of course the ordinary length in the case of a square
array with sides in the x and y directions.



3. SIMULATION RESULTS AND DERIVATIONS FOR RANDOM ARRAYS

A number of graphs giving results of simulations for random arrays will be shown in the
oral presentation. The written paper concentrates on theoretical explanations of some of
those results, so that the presentation can treat the derivations lightly.

The simulations for this section use the following parameters, except where otherwise
stated:

pulse: central frequency ~.= 3.5 MHz (2= 0.43 mm); either a short toneburst (duration T
roughly equal to 4/’.) or a correlated chirp (bandwidth B roughly 1 MHz)

array: square; random, 3200 elements (on average); aperture 430 mm ( 10001 )
point target: at 1 m range, at broadside
image slice: l-D, through target, along arc in xz plane

These parameters lead to a transverse resolution of lrnrn per m of range, and a range
resolution of approximately 1 mm—the same values as called for in the mine imaging
system.

The simulations show, first, that for signals that are short, or effectively short (short after
dechirping), the ADSL is consistently below the monofrequency level lLV. Furthermore the
level decreases with increasing angle @. These results are explained as follows. Consider a

random square array with @O=0 and @ in the xz plane as just described. For a short

toneburst, under condition (5), the fraction of elements contributing is CT/ L sin@, so the

number contributing is ZVC= ZV(CT/ L sin@). For the purpose of comparing peak and

sidelobe, we may regard each element as receiving a signal of unit strength. At the peak, all
signals are combined coherently, giving an image amplitude of N and an intensity of ZO=N2.
In the sidelobes, the signals add incoherently, so the intensities add, yielding l=NC. The
average distant sidelobe level (ADSL), measured as intensity relative to the peak, is then

ADSL = 1/10 = NC/N2 = cT/(ZVLlsin@l) (6)

‘Note that, since this value depends on @, it is a local value, the average being over the

ensemble of arrays. Note also that in the cw case, the above argument would yield Z=N and
hence, in place of (6), the well-known result ADSL=l/N (Steinberg 1976).

For a correlated chirp of bandwidth B, a corresponding calculation can be performed.
Now the intensity response of an element is proportional to the square of the autocorrelation
function of s(t) rather than to the (squared) rectangular window of s(t) itself. The resulting

expression for the sidelobe level can be simplified under the condition c / B <C L sin@ .

[Note the sign <<, as opposed to the simple < or> that was present in the short burst case
(5).] Then the result is

ADSL = c/( NBLlsin@) (7)

Comparing (7) with (6), we see that, for sufficiently distant angles, the chirp is equivalent to a
short burst of length T~, where T~=l/B.

The predicted results (6) and (7) are compared, in Fig. 2, with two simulations: a
toneburst of 4 cycles duration and a chirp with bandwidth B=fJ4. Note that the two are
equivalent in the sense just defined. Also shown is the beam pattern for a long toneburst (for
which the ADSL is l/iV). To obtain better statistics, for each angle, an average of the
simulated intensity over 50 arrays (Monte Carlo calculation) is taken, The three horizontal
lines traversing the page are the respective computed average sidelobe levels (CASL). Here
and below, the CASL is calculated as the average over all positive angles @ shown, but

omitting the 25% of angles nearest the peak (at @= O). (Here ‘arc’ may be substituted for



‘angle’ ). Note that in the present case the CASL is an average over both arrays and angles.
AB is the angular interval 0< sin@< CT / L (Eqn 5) for which the formula (6) for a short

toneburst does not apply. The crosses are points predicted by both Eqn (6) (short toneburst)
and Eqn (7) (chirp). The results are seen to agree well with the prediction. The chirp result is
claimed above as valid only if sin@ >> c/ BL, but interestingly, the chirp is found to fit the

formula well subject only to the condition sin@> c / BL. The figure also shows (short

horizontal line) the predicted CASL. The small discrepancy for the short toneburst
corresponds to a factor of 1.12 in intensity. This discrepancy appears to be accounted for
statistically by the fact that only 50 arrays were averaged.

A second area of simulations involves the use of partialty random arrays, constructed out
of identical subarrays, or ‘tiles’, for ease of manufacture. One simulation compares the fully
random array with an array constructed from 100 identical tiles, arranged as 10x10, each tile
being oriented randomly among four orientations. For the particular parameters used (0.08%
of filled-amay sites occupied, chirp, B= 1 MHz), the beam patterns resulting after averaging
over 400 arrays are shown in Fig. 3. The figure shows that changing to the replicated tile
causes the sidelobe level (CASL) to rise by 5 dB.

While we have been unable to explain the 5 dB value, we have been able to explain
approximately the shape of the replicated-tile curve. In an approximation valid when kl<eT,
the autocorrelation function of the chirp, when the analytic signal (Rihaczek 1985) is used to
represent the latter, becomes

~ (t)= sinc(Bt) exp(j2z~Ct) (8)

(subscript a for analytic), where sine x = sin(~x) / ZX. The Fourier transform of ~(t) is

~(f) = j’- ~(t)e-j2’8 dt = B-’rect[B-’(f - ~,)]
—- (9)

where rect(x) is 1 for M< ~ and is O elsewhere,

Consider separately the Fourier component for each ~ Because the tiles in any two
positions are identical, even in orientation, one quarter of the time, we expect grating lobes to
occur, giving rise to increased sidelobe intensity. They will occur when

kcL, = n 2x, with k= =27r/&, &= A/sinl@l (lo)

Here L, is the length of a tile, n is an integer, ~ is the effective wavelength along the x axis

and A = c / ~ . Thus grating lobes should occur at

sinl@l= nc / Ltf (11)

But we have seen in Eqn (9) that the spectrum of ~(t) is rectangular, with the end-points

~C& B / 2. Therefore the intensity should be enhanced in the interval

nc/L, (fC + B /2) < sinl$l < nc/L, (fC – B /2) (12)

foreach n=l,2,3,. ””.

Comparison with Fig. 3 shows first, that a series of peaks does occur and that their
shapes, beyond the first side peak (around azimuth arc 10 mm), bear a striking resemblance
to a rectangle. Second, the calculated intervals (12) for enhanced intensity are each shown in
the figure as a pair of vertical lines joined by a broken horizontal line to aid the eye. Up to
where comparison becomes impossible, the values are in fairly good agreement with the
positions at which the computed intensity rises sharply and falls sharply. (Comparison
becomes impossible when the n=5 peak begins, because that peak overlaps the n=4 peak.)
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Figure 2. Sidelobe averages for a short toneburst and a correlated chirp.
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4. VARIATION OF BEAM PATTERN WITH SPARSENESS

We have simulated the effect of increasing sparseness by considering a square array
which, when 1311ed,has40000 elements with aspacing of half a wavelength. This array was
chosen because, when thinned to N=32 elements, it is the same as a tile being considered for
the acoustic mine imaging array, the array being formed from 10x 10 tiles. Furthermore it
may be that a single tile will often be used on its own, to obtain a lower-resolution image, the
advantage being that a vastly reduced amount of signal processing would be required.

In detail, the simulations in this section use the following parameters:
pulse: short toneburst, central frequency ~c= 3.5 MHz ( A = 0.43 mm ), duration=4 cycles
array: square; aperture 43 mm (100A); random, 40000 to 16 elements
point target: at 10 m range, at broadside
image slice: l-D, through target, along a great circle

The image was calculated on a sphere at the range of the target, but only on some great
circles of the sphere. The main calculations were done for a great circle in the xz plane (plane
parallel to one side of the square array).

As the number of elements N was decreased from 40000 to 16, through seven values of
N, the changing beam pattern was calculated (figures to be presented) and several of its
parameters were monitored. It was found that, first, the 3 dB bearnwidth hardly changes with
decreasing N, even at ZV=16it has risen only by 10%. Second, as shown in Fig. 4, the heights
of the two inner sidelobes remain constant down to about N=50. Third (Fig. 4), the computed

- average sidelobe level, relative to the peak, is given approximately by CASL=O.22/N. This
formula is to be compared with the expression l/N for the monofrequency (CW) case:
evidently the short pulse yields a reduction in sidelobe level and hence an improvement. The
result CASL–O.22/N is explained roughly by the theoretical formula (6) obtained above.
That formula, averaged over the relevant angles, actually yields CASL=O. 186/N. The
agreement is regarded as satisfactory, since only one array was used at each degree of
sparseness, yielding a considerable statistical error.

The beam pattern for the filled array has a peculiar shape, in which the level becomes
very low from the 4th ‘node’ onward (i.e. from the end of the third sidelobe). By way of
explanation, the criterion L sin@ = CT (Eqn. 5) holds at this point. So from Fig. 1 (reciprocal

system), at larger angles only a subset of elements contributes, namely those lying in a slice
of width 41, measured perpendicular to the wave front. Because there are very many
elements—almost a uniform continuous distribution-and because as we proceed across the
slice the phase of the voltage changes by a whole number of cycles (four), the voltages when
added yield almost the integral of a sine curve over exactly four cycles. The latter is zero;
hence the very low level.

The beam pattern for the larger and medium values of N is very jagged: a sudden jump in
the curve of intensity versus angular displacement @ occurs at many values of @. These

jumps &e explained by Eqn (5) and the subsequent discussion of planar arrays. Each row of
elements pointing in they direction behaves as though it were projected onto the middle point
of that row. Hence, as @Jincreases, a whole row of elements having coordinate x stops

contributing at the value of @ given by 2 Ixlsin @= CT; hence the jump. And the process is

repeated with each row. We present results for an image slice along a second great circle,
through the target but intersecting the first circle at an angle of 35°. It is found that the beam
pattern becomes less jagged, as expected.
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Figure 4. Pe#ormance of sparse random arrays.

5. CONCLUSION

We have performed a number of simulations and provided analytical arguments.
These support the conclusion that the random array should be very useful in acoustics
tinder suitable conditions. The usefulness is increased when the array is two-
dimensional, the number of elements in the filled array is extremely large, the object to
be imaged is a surface, and a short or effectively short pulse is used.
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