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Nonlinear wave physics deals basically with effects connected with
evolution of disturbances of finite amplitude. A slow distortion of time-spatial
and spectral characteristics is observed with wave propagation. But nonlinear
effects may be already pronounced at small wave distances from a radiator and
they can have a significant influence on the process of radiation of itself. In this
paper a radiation of a flat piston vibrating with high amplitude is studied
theoretically. At a ffist step a solution for a piston motion driven by external
force is determined. It is shown that a piston subjected to the harmonic force of
large amplitude can radiate not only the fundamental frequency but high order
harmonics as well. A form of particle vibration near a piston face is disturbed. A
nonlinear reaction to radiation is arisen also.

In the classical problems of nonlinear acoustics well known nonlinear
effects - wave profile distortion, shock front formation, harmonics generation -
are developed at the spatial scales which are considerably larger then the
characteristic wave scales [ 1 ]. But in some interesting cases nonlinear effects
can be well pronounced closely to sound source and they carI have a significant
influence on the process of radiation of itself. . An excitation of sonic boom
waves by airplane moving with hypersonic or transonic speed is an example of a
such situation in gas mechanics. This wave is strongly distorted in a near wave



zone. Reaction to radiation offers an additional nonlinear resistance to a plane
motion [ 2 ].

A similar phenomenon is also essential for the radiation of intensive
ultrasonic waves. But until recent time a problem of nonlinear radiation of the
periodical waves seemed to be far from reality. The point is that a speed of
vibration of a radiating surface in the liquids does not exceed several of meters
per second even for the most effective ultrasound transducers; these values are of
three order less than the sound speed. A different situation emerges in two-phase
liquid-bubble media, where the sound speed is decreased sharply with the bubble
concentration increasing and its magnitude may equate to the speed of radiator
face vibration. Therefore one would expect of pronounced development of
nonlinear effects near a transducer face. It seems probable that a similar situation
has been realized in the experiments on the study of the second threshold of
cavitation [ 3 ].

Let us consider the problem in a linear approximation. An equation of
piston motion when it is subjected to harmonic external force F(t), can be

- generally written as:

d2X
— – F(t) – Pacli

m dt2 –
(1)

where m is the mass of a piston, S - is its surface area, pac - is acoustic wave

pressure, X is the displacement of a piston from the equilibrium state. In the case
of a plane wave

pm = coPow – Xk))> (2)

where co - is the sound speed, p. - is the medium density, u - is the velocity of

medium particles. At the boundary of a piston the speed of its surface dX/dt
must be equal to the speed of medium particles:

dx
— = U(tjx=x .
dt

Using boundary condition (3) we can repeatedly write Eq.(1) as follows,

(3)

d2X dX
— = F(t)/m,

dt2 ‘adt
(4)



where u = cOpOS/m.

When the external force is a

displacement in a steady state of

FO
x=–—

m02

Eq.(5) shows that the piston is

harmonic one F = FOcos(ot) , the piston

vibration can be determined from:

@%-
22

cos(d + arctg(cx/@ ). (5)

vibrated at the same frequency as the external
force, but with some phase delay which is arisen due to the load onto the
medium. Amplitude of vibration is straightly proportional to the value of external
force amplitude FO- this is a pure linear relationship.

However, even in this linear approximation a spectrum of radiating wave
will have a number
propagating from a
[1,2]:

of high order harmonics. The waveform of a disturbance
piston is determined by following inexplicit relationships

x = @(@t+ (p)= sin[o.i#) + (p],
u(-)

@t=@+~ COS(~) =&+ M COS(@
co

(6)
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where U. = — l+%
mm 012 ‘

(p= amtg(a/o$, M = uo/co - is a Mach

number.
The form of particles vibration near a piston face @(t) can be obtained by

eliminating variable < in the relations (6). A dashed line at a Fig. 1 presents one
period of a sinusoidal vibration. It shows a form of vibration for the case of very
small amplitudes F. of the external force. Solid curves show the distortion of

vibration form with the growth of a driven force. It is seen that a duration of the
positive half-period (compression) is reduced and a duration of a negative one
(rarefaction) is induced. This effect becomes more pronounced with growth of
Mach number.
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Figure 1. The profiles of a piston surface vibration. Numbers
near the curves correspond to Mach numbers. Dashed line
shows the form of vibration for M <c 1.

The spectrum of vibration, described by Eq.(6) can be evaluated by use of
Bessel-Fubini approach [ 1 ]. Function u(t) can be expanded by its Fourier series

expansion:

&= X(A. COS(~@ + B. sin(mt)).
nzl

The amplitude of a fundamental harmonic B1 can be shown to be

~ = M&(M) - J,(M)], (7)
co

(Al = O). In the above Jn is the Bessel fi.mction of the first kind of order n.

The second harmonic has phase shift and contains only cosine component with
amplitude:



A2
— = –0.5~J1(2M) – J3 (2M)] .
co

The complex amplitudes of high order harmonics C. can be determined from

general relation
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Figure 2. Normalized harmonic amplitudes of the velocity of
particle vibrations near the piston surface.

(8)

(9)

It is necessary to note that a regular component ii = –0.5 u; /cO is a result of

one-dimensional approximation we used. If a piston is supposed to be bounded
then a regular component is vanished due to medium flow inwards of acoustic
beam [ 2].

Fig.2 shows the amplitude of fimdamental 1, the second 2, and the third 3
harmonics as a function of Mach number M, using Eqs. (7) - (9).



From this figure we note the following. For approximately M S 0.2 the piston
vibrations can be considered as linear ones, and starting from M = 0.3 the
nonlinear effects become significant. A relationship I?l (M) falls from linear one,

amplitudes of the second and the third harmonics quickly grow with increasing of
Mach number.

A consistent account of nonlinear phenomena within the scope of a
continuous medium approach can be done if both geometrical nonlinearity,
described by Eq.(6) and physical one in dependence of pa=(u) will be taken into

account. Assume that a piston can radiate not only acoustic wave but a Riernann
wave also. In this case a general differential equation of a piston motion is
written as a follows:

(lo)

where y is a specific heat ratio for the gas medium. In the case of liquids y is an

empirical constant determined from experiment [ 2 ]. Equation of motion (1O) is
valid up to transonic speeds of a piston motion. It is violated for the high
negative velocities when a layer of vacuum at the boundary of a piston surface
maybe produced, and also at high positive speeds when a piston formally <<catch
up>>shock fronts moving in front of it.

At oral presentation we also count on discussing a problem of effective
ultrasound radiation in the liquid with cavitive bubbles. In a such medium the
third kind of nonlinearity is appeared [ 3 ]. It is a structural nonlinearity which is
developed due to two-phase composition of medium. A value of structural
nonlinearity depends on bubbles concentration and bubble size distribution,
therefore it is necessary to take into account the process of a cavitation
development.
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