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ABSTRACT
In analysing the vibration behaviour of turbomachinery, a problem exists in modelling
foundation-pedestal support systems whose natural frequencies are within or close to the
operating speed range. Often, a finite element model of the foundation-pedestal support is

unavailable and it is impractical to determine its modal properties experimentally. As a first
approximation, one could regard the foundation as rigid and replace the pedestals by
equivalent supports having mass and stifiess properties which correctly reflect the system
unbalance response over the operating range. This paper outlines a method for identi~lng such
pedestal properties for general rotating machine~ using measurements of the motion of the
pedestals and of the rotor. The proposed technique assumes a knowledge of the stiffhess and
damping properties of the support bearings (which maybe hydrodynamic) but does not require
a knowledge of the rotor, nor of the unbalance excitation; but merely that it be sufficient to
provide measurable motion data. Numerical experiments show that excellent identification of
pedestals is feasible even with the two digit measurement accuracies attainable with field
instrumentation, suggesting applicability to practical turbomachinery where there is significant
vibration at the pedestals though relatively insignificant vibration in the foundation itself.

NOMENCLATURE
c darnping coefficient M mass matrix
c darnping matrix n number of speeds
F force x response
K stifiess coefficient Q speed
K stifiess matrix 6) natural frequency
M mass



SUPERSCRIPTS (IF NOT OTHERWISE DEFINED) SUBSCRIPTS (IF NOT OTHERWISE DEFINED)

i imaginay part b bearing
r real part P pedestal
— vector r relative
A amplitude Y vertical direction

velocity z horizontal direction
.. acceleration

1. INTRODUCTION
The vibration behaviour of rotating machinery can be significantly aflkcted if any of the natural
frequencies of the support structure are in the vicinity of the operating speed range. If
available, the parameters of the structure, ie its mass, damping and stifiess coefficients, or its
modal parameters, can be included in existing vibration analysis software [1]. If not, the
structure would need to be modelled by some finite element analysis or identified by
experimental modal analysis or, as is ofien the case if these techniques are impractical, some
means for identifying the structure using the response measurement data due to rotor
unbalance would need to be implemented [2,3]. Utiortunately, no satisfactory means has yet
been developed, to the authors’ knowledge, for identifying complex foundations, which have
natural fi-equencies in the operating speed range. However, if the foundation can be assumed
to comprise flexible housing or pedestal structures which are connected to a rigid base at each
bearing support, a significant simplification results. Such a foundation is of practical relevance,
and this paper summarises theoretical investigations on the identification of just such flexible
pedestals using the direct K, C, M approach [2]. This approach, though found to be too
sensitive to measurement error to be able to identifi a coupled foundation [4], is expected to
be applicable here because of the simplification afforded by isolating the response at one
pedestal from that at another.

2. THEORY
Figure 1 is a schematic of a rotor-bearing-pedestal system. Assuming that the pedestals are
flexibly supported on the ground (ie on a rigid foundation) and can be represented by their
mass, direct damping and direct stiffness coefficients, their equations of motion are [1]:

(1)

where the mass, damping and stiffhess matrices are diagonal. The forces transmitted from the
rotor to the pedestals are to be calculated using motion measurements in conjunction with
assumed known dynamic bearing properties, ie:
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Fig. 1: Schematic of a rotor-bearing-pedestal system.



In the case of harmonic excitation, eqn (1) becomes:
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–Q*MP + iQCP + KP ~P =–~’ . (3)

Since the motions of the pedestals are not coupled, and the unknown elements in
MP, CP and KP are real quantities while the forces and responses are complex quantities, by

separating the real and imaginary parts, eqn (3) can be written, for each pedestal as:

(4)

If there is no damping in the pedestal, the first two equations in eqn (4) are equivalent to the
second two. As a result, either the real or imaginary part of the forces and responses can be
used. They can even be superimposed in order to smooth the results. However, if some
damping exists, as will always be the case in practice, all the equations should be used to avoid
the introduction of unnecessary errors. On the other hand, it can be shown that regardless of
whether the pedestal damping coefficients Cp are included in the parameters to be identified

or not, the results for the identified K p and Mp are untiected. Thus, for each pedestal,

eqn.(3) can also be written as:
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Separating the real and imaginary parts of eqn (6) results in:
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It is clearly seen that the identification of Kp and Mp is independent of Cp.



Thus, at each speed, the responses at each pedestal location and the forces calculated from
eqn (2) result in four equations for the five unknown pedestal parameters. Measurements at
various speeds in the speed range form a set of 4 x n linear equations for the same five
unknowns. The least squares method may be used to solve those equations for each pedestal
to obtain the identified MP, CP and KP [2].

3. NUMERICAL IDENTIFICATION
To veri~ the identification procedure, numerical tests were conducted on a fictitious rotor-
bearing-pedestal system with an arbitrarily chosen unbalance distribution as shown in Figure 2.
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Fig. 2: Rotor-bearing-pedestal with unbalance distribution.

The pedestal clampings were excluded in the first case. The unbalance response
“measurements” were the calculated results of the in-house impedance matching software [1]
which outputted both the responses of and the forces on the pedestals. Data were truncated to
some specified number of significant digits to simulate measurement accuracy. The pedestals
were so chosen that their resonances were in the speed range of interest. This approach was
similar to that used in [2] when evaluating the direct identification procedure for a more
“general foundation.

Figure 3 shows the amplitudes of the responses at the measurement points, Figure 4 shows the
corresponding phase angles and Figure 5 shows the phase differences betw-&m the pedestal
responses and forces transmitted. While the phase changes in Figure 4 look complicated and
were found to be unbalance distribution dependent, the phase differences shown in Figure 5
clearly indicate the pedestal resonances (when the angles jump from O to 180 degrees). Note
that when the pedestals are considered as part of the system, these resonances do not
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correspond to the amplitude peaks in Figure 3. Figure 5 can serve as an indication of the
amount of pedestal damping (depending on how steeply the phases vary at resonance), and of
the appropriateness of the evaluated transmitted forces (depending on how close the phases
are to 0° before a resonance and to 180° after a resonance).
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Fig. 5: Phase differences between responses at and forces transmitted to pedestals (CP = O).

4. RESULTS AND DISCUSSION
Table 1 shows the identified pedestal parameters using “measured data with 12, 3 and 2
significant digit accuracies as input. Comparison with the actual values shows that even when
the input data are truncated to two significant digits, corresponding to a maximum error of
5’%0, the identified parameters are still quite good, being correct to 2% or less for all
parameters, ie the output error is not greater than the input error. Recalculating the response
amplitudes, phase angles and phase differences displayed in Figures 3 to 5 but using the 2 digit
identified pedestal parameters in Table 1 to represent the pedestals, resulted in negligible

Table 1: Identified Pedestal Parameters ( Cp = O)

LEFT PEDESTAL RIGHT PEDES’I

K
PY Kpz Mp K

PY Kpz

(MN/m) O@ (MN/m)

Adud 10 5 10 6 8
12digit’ 10.OOO 5.0000 10.OOO 6.0000 8.0000
3 digit’ 10.001 5.0005 10.OOO 5.9998 8.0007
2 ditits 98968 49244 97653 5.9551 7.9284

L

Mp

+

20.000
20.003
19711



change to Figures 3 to 5. When superimposed, the actual and identified response curves were
indistinguishable to the naked eye. Figure 6, which shows the “measured” and predicted rotor
responses in the y direction, is typical.
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Fig. 6: Comparison between measured and predicted response amplitudes and phase angles.

Note that in the above example there was no damping in the pedestals. In such cases, either
the real or the imaginary part, or both parts of the “measurements” could be used for
parameter identification. However, should pedestal damping be present, using just the real or
the imaginary part of the data, or their superimposition, could result in inaccurate results.
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Figures 7 to 9 show the response amplitudes, the corresponding phase angles, as well as the
phase differences between the pedestal responses and the forces transmitted when damping
was introduced into the pedestals. They are similar to their counterparts in Figures 3 to 5
except instead of sudden changes in phase angles, the phase change around the resonances in
Figure 9 is smooth.
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Fig. 9: Phase differences between responses at and forces transmitted to pedestals (CP # 0),

Table 2 summarises the results obtained using 12 digit “measurement” accuracies when eqns
(4) were utilised in the manner indicated. All the other parameters in the system remained
unchanged.

Table 2: Identified Pedestal Parameters ( Cp #O, 12 digits)

R&I : All equations from Eqns (4) wereused independently
R+ I : Equationsobtainedfrom equatingreal and imagina~ parts were superimposed
R : Only equationsobtainedfrom equatingreal parts wereused
I : Only equationsobtainedfrom equating imaginaryparts wereused

LEFT PEDESTAL RIGHT PEDESTAL

K PY Kpz MP KPY Kpz Mp

(MN/m) ‘ (kg) (MN/m) (w
Add 10 5 10 6 8 20
R&I* 10.OOO 5.0000 10.000 6.0000 8.0000 20.000
R+ I 10.047 4.9645 10.OOO 6.0052 7.9521 19.976

R 9.9686 5.0065 9.9829 6.0060 7.9783 20.008
I 10.032 4.9826 9.9835 5.9966 8.0134 20.004

* all the damping coefficientswerecorrectlyidentifkd as well.

It is seen that inappropriate analysis of the data introduces error into the results even when the
“measurement” data are accurate to 12 digits, ie in the presence of darnping, all equations in
eqn (4) should be used independently.

5. CONCLUSIONS
An approach for identifying pedestal parameters is presented here which appears feasible for
flexible pedestals whose resonances are within or close to the operating speed range.
Assuming the presence of some unbalance excitation and a knowledge of the bearing support
stiffness and damping characteristics, the parameters can be identified from the measurements
of motions of the rotor and pedestals at the supports for selected rotor speeds. Such
measurements could be taken during a routine run-down procedure.



Identification of the pedestal mass and stifiesses is untiected by the pedestal darnping
(viscous) of the pedestals. However, both the real and imaginary parts of the signals need to
be used to maximise identification accuracy.

Numerical tests show that good results are achievable even when the data are truncated to two
significant digits, which is of the order of field measurement data accuracy, rendering the
technique practically viable.
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