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ABSTRACT

This paper presents an investigation into the performance evaluation of ftite difference and
ftite element methods in the nm.1-timesimulation of flexible robot manipulator systems. A
constrained planar single-link flexible manipulator is considered. Finitedimensional
simulation environments characterizing the dynamic behaviour of the manipulator are
developed using ftite difference and ftite element methods. The simulation algorithms thus
developed are implemented on general-purpose digital processors. Experimental results
verifying the performance of the algorithms in characterizing dynamic behaviour of the
system and comparative performance evaluation of the algorithms on the basis of accuracy
and computational efficiency are presented and discussed.

Keywords: Dynamic simulation, finite difference method, ftite element method, flexible
robot manipulators, real-time simulation.

1. INTRODUCTION

Flexible manipulator systems offer several advantages over their traditional counterparts.
These include light weight, faster system response, less power consumption, requiring
smaller actuators, more manoeuvrable, more transportable, safer operation due to reduced
inertia and in general less overall cost (Azad, 1995; Meng and Chen, 1988).

In order to control flexible manipulators efficiently, they must be modelled accurately.
An accurate model will result in a satisfactory and good control. A further requirement is the
efficiency in obtaining the model. Various approaches have previously been developed for
modelling of flexible manipulators (Azad, 1995). Among these the ftite element (FE) and
ftite difference (FD) techniques are commonly used. These methods allow the development



of suitable simulation environments that can be utilised for real-time dynamic characterisation
of the system and for test and verification of controller designs.

The FE method has been successfully used to solve many material and structural
problems (Meng and Chen, 1988; Usoro et al., 1986). The method involves discretising the
actual system into a number of elements whose elastic and inertia properties are obtained
from the system. This provides approximate static and dynamic properties of the actual
system. the FE method is found to be more suitable for structures of irregular nature with
mixed boundary conditions.

The FD method has previously been utilised in the dynamic characterisation of flexible
beam and flexible manipulator systems (Azad, 1995; Kourrnoulis, 1990; Tokhi and Azad,
1995). The method involves disc~tising the system into several sections (segments) and
developing a linear relation for the deflection of end of each segment using FD
approximations. This method is simple in mathematical terms and is found to be more
suitable for uniform structures.

The performance of the FD and FE methods have previously been assessed in the
dynamic characterisation of systems. However, not much has been reported on a comparative
performance evaluation of these methods in the real-time simulation of dynamic systems. The
aim of this work is to investigate the performance of the FD and FE methods within such a
framework on the basis of accuracy, computational efficiency and computational
requirements. The rest of the paper is structured as follows

Section 2 introduces the flexible manipulator considered in this study. Section 3 gives an
outline of the FD and FE simulation algorithms characterizing the flexible manipulator.
Results of implementation of the algorithms are presented and discussed in Section 4. The
paper is fiially concluded in Section 5.

.2. THE FLEXIBLE MANIPULATOR SYSTEM

The single-link flexible manipulator considered in this paper is described in Figure 1, where,
lk represents the hub inertia of the manipulator. A payload mass MP with its associated

inertia 1P is attached to the end-point. A control torque ~(t) is applied at the hub by an

actuator motor. The angular displacement of the manipulator, in moving in the ZWQ– plane,

is denoted by 8(t). The manipulator is assumed to be stiff in vertical bending and torsion,

thus, allowing it to vibrate (be flexible) dominantly in the horizontal direction. The shear
deformation and rotary inertia effects are also ignored.
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Figure 1: Description of the flexible manipulator system.



For an angular displacement 9 and an elastic deflection u the total (net) displacement
y(x, t) of a point along the manipulator at a distance x from the hub can be described as a

function of both the rigid body motion 9(t) and elastic deflection u(x,t) measured from the

line OX;

Y(x,t) = Xc(t) + ~(x,t) (1)

The dynamic equations of motion of the manipulator can be obtained using the
Hamilton’s extended principle (Meirovitch, 1967) with the associated kinetic, potential and
dissipated energies of the system. The governing equation of motion of the manipulator can
thus be obtained as (Tokhi and Azad, 1995)

~1 a’yw) azy(x,t)

ax’ + p atz
= ‘T(t) (2)

with the corresponding boundary and initial conditions as

Y@,t)=o , ,h~’fly-d’$’’)=.(t)
~ (3Zy(l,t)- ~ ~y~l,t)

‘ atz &3 .(), d’j~) =0
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where E, p and 1 represent the Young modulus, mass density and area moment of inertia

of the manipulator. Equation (2) gives the fourth-order partial diffenmtial equation (PDE)
which represents the dynamic equation describing the motion of the flexible manipulator with
no structural damping.

3. SIMULATION ALGORITHMS

In this section the development of FD and FE based simulation algorithms of the manipulator
are presented.

3.1 Finite difference algorithm

A ftite dimensional simulation of the flexible manipulator system can be developed through
discretisation both in time and space coordinates using an FD approximation to the PDE in
equation (2). To solve the PDE, it is ~placed by a set of difference equations defined by the
central difference quotients of the FD method (Lapidus, 1982; Tokhi and Azad, 1995). The
manipulator length and movement time are each divided into suitable number of sections of
equal length represented by & ( x = i~ ) and At (t = jAt ), where i and j are non-

negative integer numbers, respectively. A difference equation for the end of each section
(grid-point) is developed. The displacement yi,j+l at each time instant can thus be written as

[ 14 1
At2

Yi,j+l = ‘c _Y~-2,j + Yi+2,j + Yi-l,j + Yi+l,j+ ayi,j – J’i,j-l + —t (i,j)
P

(3)



where, c =At2EI/ph4, a=2–6c and b=4c.

Equation (3) giva the displacement of section i of the manipulator at time step j+ 1.

Using matrix notation, equation (3) can be written as (Tokhi and Azad, 1995)

ij+l= Ayi,j - Yi,j.l + BFY (4)

where, Yi~ ( k = j + Lj, j – 1) represents the deflection of sections i = 1,..., n of the

manipulator at time step k, A is a matrix with entries depending on the physical
characteristics of the manipulator and on the boundary and initial conditions related to the

dynamic equation of the system, B = At2/p and F= [z(i, j) O “o” o]’. Equation (4) is the

general solution of the PDE, giving the displacement of section i of the manipulator at time
step j +1, which can easily be implemented on a digital processor.

It follows from equation (3) that, to obtain the displacements Yi,j+l, Yn.l,j+l and Yn,j+l

the displacements of the fictitious points y_l,~, yn+l,j and yn+2,j are required. These are

obtained using the boundary and initial conditions related to the dynamic equation of the
flexible manipulator system. The stability of the algorithm can be examined by ensuring that
the iterative scheme described in equation (4) converges to a solution. The necessary and
sufficient condition for stability satisfying this convergence requirement is given by

- 0< c <0.25 (KOI.UTIIOUfiS,1990).

3.2 Finite element algorithm

Since its introduction in the 1950s, the FE method has been continually developed and
improved (Fagan, 1992). The FE method involves decomposing the mechanical structure into
several simple pieces or elements. The elements are assumed to be interconnected together at
certain points known as nodes. For each element, an equation describing the behaviour of
the element is obtained through an approximation technique and then assembled together to
form a system equation. It is found that by reducing the element size of the structure, that
is, increasing the number of elements, the overall solution of the system equation can
be made to converge to the exact solution.

The main steps in an FE analysis include (1) discretisation of the structure into elements,
(2) selection of an approximating function to interpolate the result, (3) derivation of the basic
element equation, (4) calculation of the system equation, (5) incorporation of the boundary
conditions and (6) solving the system equation with the inclusion of the boundary conditions.
In this manner, the flexible manipulator is treated as an assemblage of n elements and the
development of the algorithm can be divided into three main parts: the FE analysis, state-
space representation and obtaining the system outputs.

The residual motion of the manipulator can be represented as

I.&t) = N(x)Q(t) (5)

where, Q(t) and N(x) represent the nodal displacement and shape function respectively.

Substituting for U(X,t) from equation (5) into equation (1) and simplifying yields

y(w) = N(x)*Q(t)* (6)



where,

Q(t)* = [e(t) Q(t)]=, N(x)*= [x y(x)]

Using the above the element mass matrix Me and stiffness matrix
(Mohamed, 1995)

L L

K’ can be obtained as

~
W = pA (N*) T(lV*)& , Ke = q (B*)TB*A

o 0

where, A and L are the cross-sectional area and length of the manipulator respectively and
B* = d2N*/di2 .

The shape function N* and nodal displacement vector Q“ in equation (6) incorporate

local and global variables. Among these, the angle (3(t) and the distance x are global

variables while N(x) and Q(t) are local variables when the link is divided into n elements.

Deftig s = x - ~ li , where li is the length of the ith elemen~ as a local variable of the
i=1

nth element the new element mass matrix and stiffness matrix can be obtained for the n
elements (Moharned, 1995). It is noted in this process that, the element mass matrix depends
on the element number, whereas the element stiffness matrix has the same value regardless of
the element number. The element mass and stiffness matrices thus obtained are assembled to
obtain system mass and stiffness matrices, M and K, and used in the Lagrange equation to
obtain the dynamic equation of the flexible manipulator as

MQ(t) + KQ(t) = F(t) (7)

where F(t) is the vector of applied forces and torques and

Q(t) = [e u, e, . . . u.+, ‘.+1 ~

The M and K matrices in equation (7) are of size m x m and F(t) is of size m x 1,

m = 2n + 1. For the manipulator, considered as a pinned-free arm, with the applied torque z
at the hub, the flexural and rotational displacemen~ velocity and acceleration at the hub are

zero and the external force is F = [z O “”” 0]~. Moreover, in this work it is assumed that

Q(0) = O.

The matrix diffenmtial equation in equation (7) can be represented in a state-space form
as

x= Ax+Bu , y=cx+lh

where,

‘=[=:143‘=E”]C=[om”m]‘=[02mx1]7



O. is an m x m null matrix, 1. is an m x m identity matrix, O.Xl is an mx 1 null vector,

Z4=[T o ..O or, +3 U2 02 ““” U“+l en+l e ti2 92 ““” u“+, ~“+’r

Solving the state-space representation gives the vector of states x, that is, the angular,
nodal flexural and rotational displacements and velocities.

4. IMPLEMENTATIONS AND RESULTS

To implement the FD and FE algorithms an aluminiurn type flexible manipulator of

dimensions 960 x 19.23x 3.2 mm3, mass density 2710 kg/m3 , inertia 0.0495 kgm2 and

1 = 5.1924x 10-11m2 is considered. For simplicity purposes, the effects of hub inertia and
payload are ignored. The simulation algorithms thus developed are coded within MATLAB
and implemented on two general purpose computing domains, namely a 486DX (33 MHz)
PC and a Sun 4-ELC (33 MHz) SPARC station. A bang-bang input of amplitude 0.1 Nm
and duration 0.6 sec is used as input torque and the system response is obtained and
analysed.

Note that the 486DX and the SPARC processors are not normally used in real-time
applications. Moreover, such applications will favour programming languages other than
MATLAB. For purposes of this investigation, these resources are adequate with which a
consistent set of results would be obtained as with any other digital processor.

To investigate the accuracy of the FD simulation in characterizing the behaviour of the
system, the algorithm was implemented on the basis of varying number of sections along the
link from 5 to 20. It was noted with the response of the system at the end-point, due to the
bang-bang torque input using 5 and 20 sections, that, although the responses for the two
cases were similar in character, with 20 sections a steady-state level was reached within
0.6 sec, whereas, with 5 sections the response did not fi.dlyreach a steady-state level over
the 1.2 sec measurement period. The fwst three nxonance modes of the system with the
algorithm using various number of sections are shown in Table 1. These were obtained
through spectral analysis of the ~sponse of the system at the end-point. It is noted that the
resonance frequency corresponding to the f~st three modes of vibration of the system
converge to reasonably stable value with the algorithm using 10 sections or more and for the
second and third modes with more than 15 sections. The corresponding execution times
achieved with the two processing domains in implementing the FD algorithm with various
number of sections are also shown in Table 1. As expected, the execution time increases with
increasing number of sections. Moreover, it is noted that the two computing platforms
appear to perform at a similar speed with lower number of sections. However, as the number
of sections increase the SPARC processor outperforms the 486DX processor significantly.
This is mainly due to the run-time memory management and relatively limited cache in the
486DX processor.

To investigate the accuracy of the FE simulation in characterizing the behaviour of the
system, the algorithm was implemented on the basis of varying number of elements from 1 to
20. It was noted that the response of the system at the end-point due to the bang-bang torque
input ~ached a steady-state level within 0.6 sec with the algorithm using one or more
elements. Moreover, the residual motion was found to be predominantly characterised by the
fwst mode of vibration with one elemen~ whereas, with more elements higher modes of
vibration were also apparent. This is evidenced in Table 2 with the resonance modes of the



system in relation to the number of elements used. It is noted that the number of resonance
modes identified increases with increasing number of elements. Moreover, reasonable
accuracy in the f~st mode is achieved with two elements, in the second mode with three
elements, in the third mode with more than five elements and in the fourth mode with more
than 10 elements. The corresponding execution times achieved with the two processing
domains in implementing the FE algorithm with various number of elements are also shown
in Table 2. As expected, the execution time incnm.ses with increasing number of sections.
Moreover, it is noted that the SPARC processor outperforms the 486DX processor
signiilcantly. This is mainly due to the run-time memory management and relatively limited
cache in the 486DX processor.

Table 1: Modes of vibration of the system and execution times of computing
domains with number of FD sections.

Number of I Modes of vibration (Hz) I Execution times (see)

sections Mode 1 I Mode 2 I Mode 3 I 486DX I SPARC

5 I 11.1917 I 33.5751 I 60.3109 I 1.4100 I 1.2600

10 I 12.4352 I 37.9275 I 77.4093 I 6.9767 I 3.6400

15 12.4352 39.5337 81.6062 29.9800 21.0433

20 12.4352 41.3472 81.7617 60.7750 42.9000

I Table 2: Modes of vibration of the system and execution times of computing domains I

I with number of FE elements. I

I Number of I Modes of vibration (Hz) I Execution times (see) I

elements Mode 1 Mode 2 Mode 3 Mode 4 486DX SPARC

1 14.509 57.306 - 1.9067 0.8278

2 11.9689 44.974 109.896 - 2.1933 0.9389

3 11.969 40.622 93.575 - 2.2733 1.0833

5 11.969 40.259 86.684 112.798 3.6667 1.4833

10 11.969 40.259 85.596 132.383 11.7333 3.9944

15 11.969 40.259 85.321 135.448 20.3800 9.3834

20 11.969 40.259 85.232 135.285 37.9000 18.7722

Comparing the results in Tables 1 and 2 reveals that reasonable accuracy in
characterizing the behaviour of the manipulator up to the fust two resonance modes is
achieved with the FD and FE algorithms using at least 15 sections and 3 elements
respectively. The corresponding execution times in implementing the algorithms are 29.98



and 2.2733 sec on the 486DX and 21.0433 and 1.0833 sec on the SPARC processor
respectively. With the inclusion of the third resonance mode, however, similar level of
accuracy is achieved with the FD and FE algorithms using at least 20 sections and 5 elements
respectively. The corresponding execution times in implementing the algorithms are 60.775
and 3.6667 sec on the 486DX and 42.9 and 1.4833 sw on the SPARC processor. In each
case, it is seen that the FE algorithm performs more accurately and efficiently than the FD
algorithm.

5. CONCLUSION

A comparative performance evaluation of the FD and FE methods on the basis of accuracy
and computational efficiency in the simulation of a flexible manipulator system has been
presented. Simulation environments characterizing the dynamic behaviour of a single-link
flexible manipulator have been developed using FD and FE methods. The algorithms thus
developed have been implemented on general-purpose computing domains and their
performances on the basis of accuracy and computational speed have been investigated. It
has been demonstrated that although the FE method is mathematically more complex than
the FD method, better accuracy and efficient performance is achieved with the FE method in
comparison to tie FD method.
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