
FIFTH INTERNATIONAL CONGRESS ON SOUND AND VIBRATION

DECEMBER 15-18, 1997
ADELAIDE, SOUTH AUSTRALIA

THE LIMITATION IN THE SEA PREDICTION OF
POWER TRANSMISSION AND ENERGY DISTRIBUTION

R.S. Ming and J. Pan

Department of Mechanical and Materials Engineering
The University of Western Australia, Nedlands WA 6907, Australia

Abstract This paper presents a numerical study of the SEA prediction accuracy in a
coupled plate system. It was shown that the parameters controlling the prediction accuracy
are the geometric mean of modal overlap factor and number of coupled modes in the
frequency band of analysis. In the low frequency bands where few coupled modes are
present, both the prediction error and standard deviation (in terms of driving force
locations) of the numerical results are large. The “traveling wave” model and SEA may not
be appropriate. In the medium frequency bands where the modal number is neither large
nor small, the “traveling wave” model and SEA are applicable but their prediction errors
are not negligible. The prediction error and standard deviation generally decrease as the
geometric mean of modal overlap factor increases. However, the geometric mean of modal
overlap factors cannot be used as a sole parameter for judging the prediction accuracy. For
the same geometric mean value of modal overlap factors but different dissipation loss
factors, the prediction errors could be different. The increase of modal number can reduce
the fluctuation and standard deviation, but cannot reduce the prediction error. The increase
of dissipation loss factors can reduce not only the fluctuation and standard deviation but
also the prediction error. In the high frequency bands where both the modal number and
modal overlap factor are large, the standard deviation becomes small and the prediction
error is negligible.

INTRODU~ON

Statistical energy analysis (SEA) provides a useful tool to study the vibrational

behaviour of complex structures. In SEA the system being studied is discretised into
subsystems and the vibrational behaviour is described by the mean values of subsystem
energies and power flows. The prediction can be made of the vibrational behaviour on the
basis of known values of the power inputs, dissipation and coupling loss factors of a chosen
SEA model. The prediction accuracy is assessed by the prediction error and standard



deviation. The prediction error results from the fact that the chosen SEA model does not
fully represent the actual dynamical system. The standard deviation characterises the
uncertainty of the actual vibrational behaviour.

The dynamical responses and power flows in coupled beams or plates have been
studied using SEA by several authors[ 1-4]. It was shown that the geometric mean of modal
overlap factor has a strong effect on the accuracy of SEA prediction. When the geometric
mean of modal overlap factor is considerably high, the deviation of actual value from SEA
prediction is usually small and negligible, the “traveling wave” estimation of coupling loss
factor agrees well with the exact calculation. In many practical situations, however, the
geometric mean of modal overlap factors in the system may not be large, the deviation of
actual value from SEA prediction could be high.

This paper presents a computational study of the accuracy in the SEA prediction of
dynamic response and power flow in a plate system. This system consists of two steel
plates and a steel beam, as shown in Figure 1. The surface dimensions of plates 1 and 2 are
assumed to be 1.9x 1.6m and 2.6x 1.6m respectively. The thickness of plate 2 is 2mm. The
neutral planes of the plates are in the same level and also coincide with the neutral plane of
the beam. All th? external boundaries of the system are assumed to be simply supported.
Bending vibration is generated in one plate by a point force and in another plate by the
power transmitted via the beam. The displacement response of this system can be described
by the classical Bernoulli-Euler bending theory. Numerical results of the power
transmission and energy distribution can be obtained from the exact solution of the
Bernoulli-Euler bending equations and the boundary conditions.

COUPLING LOSS FACTOR

Coupling loss factor in SEA characterises the power flow between subsystems.
Usually it is experimentally determined in practice. But for simple cases, it can be predicted

on the basis of the “traveling wave” model in terms of wave transmission coefficient TIZ
[5]
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where &2@is the radian frequency; c~ and S1 are the bending wavespeed and surface area
of plate 1;& is the coupling length.

The plate system can be modelled into two SEA subsystems with each plate being
defined as one SEA subsystem. If each of two subsystems is driven by an external force in

turn, from the power balance equations the coupling loss factor q12 from subsystem 1 to 2
is given by [6]
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where q2~P/toE2{2) is the total dissipation loss factor of subsystem 2; P2 is the power
input into subsystem 2 and R12=E1ZE2is the energy ratio; superscript (1) or (2) means that
only subsystem 1 or 2 is driven directly by an external force.

Figure 2 shows a comparison of the predicted (using equation (l)) and exactly
calculated (using equation (2)) (spatial and frequency mean) coupling loss factors from
plate 1 to 2 and the standard deviations. The dissipation loss factor of plate 1 is assumed to
be 0.02. Three exactly calculated results correspond to different dissipation loss factors



(TI@.02 and 0.2) of plate 2 and different thicknesses (h1=2mm and 5mm) of plate 1 which
corresponds to different modal densities (nl=0.484 mode/Hz and 0.194 mode/Hz). Both the
predicted and exactly calculated coupling loss factors depend on modal density and
frequency. However, the predicted values are independent of the dissipation loss factors of
the coupled plates while the exactly calculated results depend very much on the dissipation
loss factors. This dependence decreases with increasing frequency. This means that the
coupling loss factor between finite plates is a function of the dissipation loss factors, modal
densities and frequency, of which the combined effect can be described by the geometric

mean of modal overlap factor M = ~- where Ml =nl(j)qf and M2=n2ff,)qfrepresent

the modal overlap factors of plates 1 and 2 respectively. Generally, both the prediction
error and standard deviation decrease with increasing the geometric mean of modal overlap
factor. However, M cannot be used as a sole parameter for judging the prediction accuracy.
For the same value of M but different dissipation loss factors, the prediction errors are
different. The coupling loss factor is also the function of modal number. In the low
frequency bands where the wavelengths are larger than or comparable with the surface
dimensions of the plates and few modes are present, the fluctuation of exactly calculated
results is large, Both the standard deviation and prediction error are great despite M is not
small. The “traveling wave” model may not applicable. For example, for the coupling loss

factor where q2=0.2 in the frequency band of 16Hz where no coupled mode is present, the
prediction error is more than 5dB although M=O.5. In the medium frequency bands where
the modal number is neither large nor small, the exactly calculated coupling loss factor
curve becomes smoother and the standard deviation becomes smaller. The “traveling
wave” model can be used but the prediction error is visible (1-3dB) depending on the
geometric mean of the modal overlap factors. In the high frequency bands where their
centre frequencies are larger than 400Hz, both the modal overlap factor and modal number
are very large, the coupling loss factor can be predicted accurately on the assumption that
all waves are incident on the coupling boundary in the normal direction.

POWER TRANSMISSION

The exact estimation of the power flow between the plates can be made from the
solution of the Bernoulli-Euler bending equations and the boundary conditions. Figure 3
shows the spatial mean power flows from plate 1 to 2 with different modal densities and

dissipation loss factors (nl=0.484 mode/Hz and ql=0.02 or 0.2; nl=O.194 mode/Hz and

Tll=O.02). Each spatial mean value is the average over 12 exactly calculated results. similar
to the coupling loss factor, the spatial mean power flow depends on dissipation loss factors,
modal densities and frequency, that is, it is a function of the geometric mean of modal
overlap factor. The power flow generally increases with increasing modal densities and
dissipation loss factors. For the curves with the same modal density but different
dissipation loss factors, the response maximum and minimum locations coincide at low
frequencies where the wavelengths are longer than or comparable with the surface
dimensions of the plates. The increase of damping results only in a reduction (or increase)
of the response maximum (or minimum) values. If the spatial average is not taken, the
power flows for different source positions are different and fluctuate around its mean value.
Although the fluctuation is large at low frequencies, the response maximum locations of the
curves coincide, which indicates that the variation (or the effects of uncertainty) is small.



However, the variation increases as frequency increases. At high frequencies where the
geometric mean of modal overlap factor is large, the variation in frequency response is also
large. It is more likely that a maximum location of one response curve may coincide with a
minimum locations of another.

If both spatial and frequency averages are taken, the fluctuation of exactly
calculated power flow can be reduced to a great extent, as shown in Figure 4, which shows
the one-third octave frequency band values of the same data as those shown in Figure 3 and
also their corresponding SEA predicted values and standard deviations. Both the prediction
error (the level difference between the prediction and the mean value of exactly calculated
results) and standard deviation are the function of modal overlap factors. A small geometric
mean of modal overlap factor usually corresponds to large values of prediction error and
standard deviation. In the low frequency bands where the wavelengths are larger than or
comparable with the surface dimensions of the plates, both the standard deviation and
fluctuation of exactly calculated results are large. This indicates that the prediction cannot
be correctly made using SEA because few coupled modes are present in the frequency band
of analysis. As frequency increases, the bandwidth of analysis is broadened and the modal
number increase+ When the modal number is neither large nor small, SEA could be used
but the prediction error is not negligible. In some frequency bands, the prediction error is
larger than the standard deviation, that is, the prediction falls outside of the 95%
confidential interval. This is because a few modes are present and the responses of some
modes are very small in the frequency band. For example, for the curve (hl=2mm and

ql=O.02) the predicted modal number is 7 in the one-third octave frequency band with
centre frequency of 63Hz but only 4 modes actually exist and two modal responses are very
small. In the high frequency bands where both the modal number and modal overlap factor
become very large, the predicted and exactly calculated results agree well and the standard
deviation is within ldB.

DYNAMIC RESPONSE

The estimation of energy distribution in the plate system, which is made on the
basis of the Bernoulli-Euler bending equations and boundary conditions, will not result in
any approximation error. For the analysis made in a wide frequency band, the mean values
of the energies in a coupled system can be predicted using SEA from the power balance
equations. Figure 5 compares the predicted and averaged (exactly calculated) energy levels
of the source and receiving plates in the system. Figure 6 shows the corresponding standard
deviations. It is shown in Figure 5 that the energy level of a plate is affected by the
dissipation loss factor of the coupled plate. In the low frequency bands (for example, the
centre frequencies are smaller than 20Hz in Figures 5a and 5b or 50Hz in Figure 5c), the
fluctuation in the exactly calculated energy levels of both source and receiving plates is
large. The reason is that the wavelengths are comparable with the surface dimensions of the
plates and the number of coupled modes is very small in the frequency band of analysis. As
frequency increases, the modal number increases and the fluctuation decreases. In the
medium frequency bands, the prediction error and standard deviation generally decrease
with increasing modal overlap factor. For the same modal overlap factor, however, the
prediction error and standard deviation in the source plate are usually smaller than those in
the receiving plate. The energy of the receiving plate is over-predicted in most frequency
bands. This is because the transmitted power is over-predicted (see Figure 4). In the higher



frequency bands where the centre frequencies are above 400Hz, the spatial and frequency
mean values of exactly calculated energy levels agree well with the predicted values, the
prediction error is negligible.

CONCLUSIONS

This paper presents a computational study of the accuracy in the SEA prediction of
power transmission and dynamic response in a coupled plate system. It is shown that two
principal parameters which control the prediction accuracy are the modal overlap factor and
the number of modes in the frequency band of analysis. In the low frequency bands where
the wavelengths are larger than or comparable with the surface dimensions of the plates,
few modes are present, the fluctuation of the numerical results is large. The “traveling
wave” model and the SEA prediction may not be applicable. In the medium frequency
bands, the modal number is neither large nor small, SEA can be used but its prediction
error is not negligible. The SEA prediction error and the standard deviation of the
numerical results generally decrease with increasing the geometric mean of modal overlap
factors. However, the geometric mean of modal overlap factors cannot be used as a sole
parameter for judging the prediction accuracy. For the same geometric mean value of modal
overlap factor but different dissipation loss factors, the prediction errors could be much
different. The increase of modal number can reduce the fluctuation and standard deviation,
but cannot reduce the prediction error. The increase of dissipation loss factors can reduce
not only the fluctuation and standard deviation but also the prediction error. In the high
frequency bands where the wavelengths are much smaller than the surface dimensions of
the plates, both the geometric mean of modal overlap factor and the number of coupled
modes becomes large. The standard deviation of the numerical results becomes small and
the SEA prediction error can be negligible.

The dynamical response and power transmission in a finite plate system are the
function of source location and modal overlap factor. In the narrow frequency bands, the
variation in the shapes and resonance peak locations of the individual curves of each
variable for different source locations is small at low frequencies where the wavelength is
larger than or comparable with the surface dimensions of the plates, but it increases with
increasing frequency. The spatial mean of each variable fluctuates around its mean value
and the level difference between them decreases with increasing modal overlap factor.
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Figure 1. Coordinates and load conventions of a two-coupled plate system.
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Figure 2. (a) Coupling loss factors predicted with incident angle of 90° (h1=2mm:
—--— -. lZ~=5mrn:--------” ;) or averaged from 0° to 90°

(h~=2mm: ‘ ; h1=5mm: – - – - – -- )) and their exact

solutions (h1=2mrn and q2=0.2 (0); h1=2rnm and q2=0.02 (++); hl=
5mm and q2=0.02 (X )).

(b) Standard deviations.
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Figure 3. Exact power flows from plate 1(1.9x1 .6m) to plate 2(2.6x1 .6x0.002m).

nl=0.484 mode/Hz and ql=0.02 ( ); nl=0.484 mode/Hz and
?7]=0.2( – – – – “); n~=o.194mode/.Hz and ql=0.02 ( -------- c).
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Figure 4.(a) Power flows from plate 1 (1.9x1 .6m) to plate 2(2.6x 1.6 xO.002m) predicted

(h1=2mm and ql=0.2( – – – – - ); h1=2mm and ql=0.02 ( );
h1=5rnm and ql=0.2 ( – - – - – - ) and their exact solutions (hl=2mrn and

T?l=O.2(0); h1=2mrn and ?j’1=0.02(*); hl=5mm and T71=0.2(X )).

(b) Standard deviations.
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Predicted and exact energy levels in the source (1 .9x1 .6rn, , +$)and

receiving (2.6x1 .6x0.002m, — — — — -, O) plates.

Standard deviations of the energy levels in source (+$) and receiving (0) plates.

(a) h1=2mm and qz=O.02; (b) h1=2mm and qz=0.2; (c) h1=5mm and qz=0.02;


