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ABsmcT

This paper describes the use of proper orthogonal decomposition for problems in
hydroacoustics where structural response and sound radiation is caused by unsteady flow.
For a complete solution the flow in the region of interest must be calculated using numerical
solutions to the Navier Stokes equations and this paper will describe how proper
orthogonal modes may be used to spezify the unsteady flow at the upstream boundary of
the computational domain. This will be shown to offer signit3cant savings in computational
effort for both linear and non-linear problems providing the correct modes can be
determined.

INTRODUCTION

Recent advances in computational methods have resulted in improved techniques
for solving problems in hydroacoustics which involve the interaction of incompressible
turbulent flow with fluid loaded flexible structures. The primary interest is to calculate the
response of the structure to the incoming flow and this requires a knowledge of the surface
pressure fluctuations induced by the flow. A typical problem is illustrated in figure 1 which
shows a plate like structure downstream of an appendage which protrudes into a non-
uniform flow. Accurate CFD calculations can be carried out in the computational domain to
obtain the blocked pressure on the plate surface and then structural response models am
used to calculate the motion of the structure and, if necessary, the subsequent sound
radiation. One of the difficulties with this approach is the correct definition of the inflow to
the computational CFD domain. Clearly this must be specifkd accurately if the correct
result is to be obtained but there are fundamental difficulties as to how this flow should be
defined. In all problems of practical interest this flow will be turbulent and of ftite extent.
The fact that the flow is bounded implies that the turbulence must also lx inhomogeneous
and this complicates the problem because the statistics of the surface pressure fluctuations
are not independent of location.

The objective of this paper is to discuss the optimal description of the flow at the
upstream boundary of a finite computational domain. One approach is to assume linear
equations of motion and specify a harmonic inflow disturbance, solving the problem in the



wave number domain[ 1]. For the turbulent inflow, a wavenumber spectrum of the
turbulence can be defined and, for homogeneous flows, this leads to a simple result for the
surface pressure[ 1]. However for inhomogeneous flows, as will shown below, the
wavenumber spectra do not simplify and leave complicated expressions for the surface
pressure, which require enormous detail about the statistics of the inflow to be specified.
An alternative approach is to use proper orthogonal decomposition [2,3] to describe the
inflow. This specifies the inflow turbulence as a set of uncorrelated orthogonal modes and
formal expressions exist for the optimum modal description which minimizes the number
of modes required. Using this approach in a linear problem means that the computations
need only be carried out once for each mode specified at the input. The time averaged
output is then simply the independent sum of the mean square values computed for each
mode. This can result in significant computational advantages for stochastic problems at the
same time as providing a rigorous basis for the procedure being used.

This paper will describe the mathematical basis for proper orthogonal
decomposition of linear and non-linear problems and then give an example of how a simple
flow may be broken down into it’s empirical orthogonal modes. The example chosen for
this is an unsteady trailing tip vortex, which is typical of the type of flow which might be
expected from a large coherent structure in a more complex turbulent flow. It will be shown
that the modal summation converges very rapidly and that the modes for this flow can be
estimated from a relatively small number of measurements.

PROPER ORTHOGONAL MODES FOR LINEAR PROBLEMS

We will start by considering the relatively simple problem of the pressure
fluctuations induced by an unsteady turbulent flow next to a structure. We will assume that
the linearized equations of motion may be used, which is a valid assumption when
boundary layer pressure fluctuations are caused by the interaction of turbulent flow with
mean flow shear[ 1]. We will also assume that the surface pressure at the location x may be
calculated providing that the flow is specifkd on the inflow surface to the computational
domain shown in figure 1.

ComputationalDomain

Plate Structure

Figure 1:A typical problem in hydroacoustics: an appendage disturbs the mean jlow over a
flexible structure and excites both root and trailing tip vortices. The unsteady flows excite
the nearby structure.



Since the problem is assumed to be linear a solution can be obtained by considering
an inflow disturbance which is harmonic in space and time, and superimposing the results
for each wavenumber and ikquency to give the complete solution. Consequently if a
vertical inflow disturbance w,exp(-ik.y-i~t) is defined at the inflow surface, the surface
pressure can be specified in the form

(1). .
P(X, t) = wj~’ (x, k o)exp(–i@

where Fj is the response of the system to the jth component of the incoming gust. For a
general reflow disturbance z+(y,t)we define Wjusing a space time Fourier transform so that

(2)

Wj (k, CO)= &~T~.j(y,t).ia+ik”ydtfl
and

w

p(x,t) = j j wj (k, @)Fj (x,k, a) exp(–iti)dkdco
-=’

If the inflow is turbulent we can only define it’s mean or average statistics and so we are
primarily interested in the cross power spectrum of the pressure fluctuations. This is
obtained from the Fourier transform of the messure fluctuations at x and x’ in the form.

(3)

Cpp(x, x’, a))= ;Ex[p(x,o)p” (x’,(o)]

This basic result shows that the surface pressure spectrum is defined in terms of the
wavenumber transforms of the inflow disturbance. This can be dated to the more easily
interpreted cross correlation of the velocity fluctuations by

(4)

where

Rg(y, y’, r) = & f u~(y,t)uj(y’,t- ~)dt = Ex[~i(y,t)uj(y’, t-~)]
-T

This shows that a double volume integral and a Fourier transform need to be evaluated to
corxectly specify the random inflow to the computational domain. Furthermore the
interpretation of equation (4) is far from obvious and it is not clear how the features of the
flow are coupled to the acoustic pressure fluctuations. Inevitably, simplifying assumptions
have been used to help with the interpretation of this problem and the most useful of these
is to assume a homogeneous turbulent flow so that the cross correlation is a function of y-
y’ only. Then equation (4) yields



= @ij(k,~)6(k - k’)
so that

(5)

The surface pressure is then defined in terms of the wavenumber energy spectrum @u(k,@)
of the turbulent flow. Various models are available for this function which allow it to be
specified in terms of a turbulence intensity and integral length scale (or for anisotropic
turbulence, lengthscales in each orthogonal direction). Flow measurements therefore need
only be directed towards evaluating these parameters which simplifies the measurement
problem. The wavenumber spectrum model also allows the integral in equation (5) to be
carried out analytically in some cases and so a closed form solution can be obtained. While
this leads to a relatively attractive result, it imposes a very severe condition on the
description of the inflow, namely that the flow is homogeneous. Unfortunately this
assumption is unrealistic for almost all flows of interest, and, unless conditions such as
“local homogeneity” can be applied, the full wavenumber integral defined in equation (4)
must be used to evaluate equation (3).

An alternative approach is to use a modal expansion of the inflow which was
originally proposed by Lurnley[2]. The concept is to expand the unsteady velocity at the
inflow plane as a set of uncorrelated orthogonal modes in the form

(6)

Ui(Y,t) = ~ an (~)o~)(Y)

n

The requirement that the modes are uncorrelated is imposed by specifying

{

an(t) nz=nEx[an(t)am(t - z)]= ~
m+n

and SO

Rti (y, y’,@= ~ an (7)@fn)(y)#) (y’)
n

By taking Fourier transforms overtime and space we fmd

(7)

(8)

(9)

and SO

(lo)

[ 1[ 1
*

Cpp (X, X’,Ci)) = ~ an((D) j $/n)(k)Fj (X,k, @)& j f$) (k)F; (X,k,~)dk
n k k



The advantage of this approach is that the computations of the surface pressure can
be carried out for each mode individually and the acoustic power spectrum will be the
independent sum of the mean square output from each modal calculation. Using the modal
expansion (5) the flow has not been restricted in any sense and we can allow for
inhomogeneous turbulence without difficulty. Furthermore we can identify dominant
modes and their coupling efficiency, and this may lead to a better understanding of the
features of the inflow which affect the structural response.

The computation time for the evaluation of either equation (3) or equation (10) will
typically be dominated by the calculation of the response functions Fi(x,k,co).
Consequently the formulation given using orthogonal modes does not necessarily offer
major computational advantages if the calculation of the response function is carried out in
the wavenumber domain. However if the computations are carried out for each modal

velocity vector @/’’)(y)defined on the inflow surface and the downstream response function

to this mode is defined as F(”J(x,o) then, since the contribution from each mode is
uncorrelated,the surface pressure spectrum is simply the linear sum of the modal response
fimctions in the form

(11)

Cpp(x, x’, a))= ~ an(fN)F(n)(x, CO)(N)(x’,CO))*
n

This clearly provides a major reduction in the computational effort required to solve this
problem and since the modal description is optimal the number of terms required to be
evaluated in (11) will be the minimum possible, providing the most efficient computational
approach.

However we still need to define the optimal set of modes and these can be obtained
from the theory of proper orthogonal decomposition[2,3]. This theory shows that a set of

orthogonal modes which maximize the averaged projection of Ui onto the modes @$) is
obtained from the solutions to

(12)

J R~(x>x’,T)@fn)(x’)w(x’) =an(7)@y)(x)
v

Therefore to evaluate the modes required in (11) we must, in principle, specify the cross
correlation function everywhere in space as required by equation (4). It would appear
therefore that the modal decomposition approach has not provided any reduction in detail
required for the description (or measurement) of the flow. However the modes provide a
more rigorous basis on which to interpret the flow. Furthermore the number of modes
required to describe the flow [4] can be signitlcantly less than the number of wavenumbers
required for the same flow and so computational savings in evaluating (11) rather than (3)
may be significant.

NON- LINEAR PROBLEMS

In the previous section we considered linear problems where the flow could be
described using the linearized equations of motion. However the Navier Stokes equations
are fully non-linear and the approach described above is not adequate for problems where
non-linear effects can be important. In these cases Fourier analysis or the linear sum of
uncorrelated modes can not be used. Furthermore the inflow boundary conditions must be
specified in the time domain. The optimum descriptor of the inflow for non-linear problems
is therefore quite different from those required for linear problems. One approach is to
extend the upstream boundary sufficiently far upstream that the flow may be considered as
either quiescent or uniform and completely steady. Direct numerical simulation can be used



to describe the flow and the turbulence is allowed to evolve naturally until a statistically
stationary mean and unsteady flow is established. However this approach is
computationally intensive and here we propose an alternative which uses proper orthogonal
modes to describe the inflow on a surface which is in the unsteady flow region. Clearly the
choice of this surface will depend on the particular problem and the information available
but the concept is to use a description such as equation (6) to define the inflow on that
surface. This would appear to be the only or at least optimum flow description because the
modes are chosen to be optimal by definition. To define the time history of the inflow, the
coefficients an(t)are specified using pseudo random sequences which have the same higher
order statistics (i.e. mean, standard deviation, skewness and kurtosis etc.) as the measured
or estimated inflow. When a steady state situation has been established, the statistics of the

parameters of interest will then depend on Ex[ui(t)u,{t+z)], Ex[ui(t)uJt+@uJt+ z’)] and

Ex[u~t)u~t+ ~)u~(t+~)u.(t+ V)] at the inflow boundary. Since each mode in the sequence

given in (6) is uncorrelated the results will depend on Ex[aJt)aJt+~)],

Ex[ao(t)aJt+ @a~(t+7)]and Ex[an(t)aJt+@a~(t+z’)a~(t+~’)].These parameters may be hard
to measure or model but in principle they can be established, especially if the inflow can be
defined with a limited number of dominant modes. This approach is very attmctive because
it provides a non-mbitrary method to define the inflow and may lead to significant
reductions in the computational volume required to define the problem without any loss of
accuracy and hence a major reduction in computational effort.

PROPER ORTHOGONAL DECOMPOSITION OF A TRAILING TIP VORTEX

There are very few examples in the literature where the proper orthogonal
decomposition of a turbulent flow has been achieved[3]. The difficulty is that equation
(12), which must be inverted to obtain the proper orthogonal modes, requires the cross
correlation function to be defined for all reference points x and all displaced points x’. This
type of detail is hard to obtain ffom measurements and the only successful evaluations of
proper orthogonal modes have used direct numerical simulations to define the flow[4].
However Devenport et al[5] measured the details of the unsteady flow around a blade tip
vortex in a free stream. It was found that the apparent low frequency turbulence in this flow
was caused by the unsteady motion of the vortex core relative to a f~ed probe. It was also
shown that the statistics of the low frequency turbulence could be defined using the known
mean flow and the probability density function of the vortex location relative to the probe.
Assuming Gaussian statistics the mean and standard deviation of the vortex core location
were then evaluated from measurements. The probability model described by Devenport et
al [5] enables all the second order statistics of the unsteady flow to be completely defined.
Consequently the cross correlation function required for the evaluation of (12) can be
specified exactly and this enables the proper orthogonal decomposition of this flow to be
carried out.

As an illustrative example we will show the proper orthogonal modes of the axial
velocity components of a q vortex whose core location is a random function. The standard
deviation of the core displacement is assumed to be small compared with the core size and
the mean axial velocity is defined as

uDm =
UD exp(-d?2/cd2)

l+2czcr21Cd2

where R is the distance from the core of the vortex, d is the radial scale of the axial profile

and u= I .25643. Figure 2 shows the mean square turbulence intensity in the axial direction
obtained from this model and figure 3 the first four proper orthogonal modes. Finally in



figure 5 the eigenvalues Anareshown for each mode, and it is seen that rapid convergence
occurs and only a few modes are required to describe the flow.

CONCLUSIONS

In this paper we have outlined how proper orthogonal decomposition can be used to
formally define the inflow boundary conditions to a computational domain when the inflow
includes a turbulent or unsteady component. The proper orthogonal modes are the optimum
description of the unsteady flow in as much that they minimize the number of modes
required to define the problem. Using the approach discussed above they are also the
optimum computational approach for linear problems and provide a rational basis for the
time histories at the inflow for non-linear problems. The difficulty with defining the modes
is obtaining sufficient information about the flow to carry out the proper orthogonal
decomposition. A model problem has been considered in which the unsteady flow was
caused by the wandering of a trailing tip vortex. The results show that them are a very
limited number of proper orthogonal modes required to define the flow, and this implies
that the measurement detail required to define the flow using modes, as in (8), is much less
than the measurement detail required to define the cross wavenumber spectra defined in
equation (4).
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Figure 2: The correlation finction RJx,x,O) for the axial velocity of a trailing tip vortex.



Mode 3 Mode 4

❑ m

Figure 3: Thefirst four proper orthogonal modes of a trailing tip vortex,
-1.5d<y<l.5d, -1.5d<z<l.5d
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Figure 4: The eigenvalues of the proper orthogonal modes of a trailing tip vortex.


