
FIFTH INTERNATIONAL CONGRESS ON SOUND AND VIBRATION

DECEMBER 15-18, 1997
ADELAIDE, SOUTH AUSTRALIA

Invited Paper

ROOM ACOUSTICS CHARACTERIZATION FOLLOWING A PHONON
TRANSITION THEORY

J. L. Bento Coelho and D. Alarc50

CAPS - Instituto Superior T6cnico, P -1096 Lisboa Codex, Portugal

ABSTRACT

A prediction technique is described for the calculation of the most relevant acoustic
field parameters in enclosures with different wall materials and geometries, by considering
three dimensional phonon random walks. A transition matrix is considered where the
transition probabilities are based on the solid angle magnitudes of the enclosure walls,
subtended at some particular wall centre. The wall phonon density transitions at every mean
relaxation time and diffhse wall radiation allow the calculation of sound intensity,
reverberation times and intelligibility indexes at a receiving point. Computer simulation results
show good agreement with statistical theory for quasi-diffuse fields, whereas in other cases
results are seen to depend on the particular location of the detection point.

INTRODUCTION

Assessment of room acoustical parameters is of major importance in room acoustics
especially at the design stage. The classical statistical theories fail to give good results when
compared with more elaborate simulation techniques, generally based on ray-tracing or sound
images techniques, except for ideal situations, such as diffbse sound fields or homogeneous
geometrical and material arrangements

This paper describes a technique which can be used to yield the room acoustical
parameters from an alternative theory that is seldom used and almost unknown, first

implemented by Kruzins and Fricke [1], which makes use of phonons as sound energy
particles. A computer program was written to calculate the relevant acoustical parameters of



sound fields in enclosures with diflerent wall materials and arbitrary geometrical
arrangements. The steady-state sound pressure level distribution, reverberation time T60 and
intelligibility indexes C7, C70 and (280 were thus determined.

ACOUSTICAL PHONON TRANSITION AFTER A MARKOV PROCESS

Consider an enclosure limited by dfise radiating plane walls and with an omni-
directional sound source. The sound field will be considered to be constituted by a large
number of sound energy packets, the acoustical phonons. The motion of a phonon, ailer it
leaves the sound source and until it is detected, is regarded as random.

The various wall surfaces that a phonon can encounter can be noted WI, Wz,..., W. and
it is first assumed that one phonon is emitted from the source and “collides” with W,. Inside

the enclosure, the phonon will be radiated, within a time intervals, either from W, to WI with
probability <1 IPli>, or from W, to Wz with probability <21PIi>, or in general from W, to W,

with probability <jlPli>. This process is repeated within the next time interval 28, but the
phonon’s probable position depends on the past history, that is, it depends on where the
phonon decided to go earlier.

If the phonon is initially at Wi then an initial position vector can be defined as

EO=(oooo 1 o)? > 9 9...?9... (1)

where the ith position represents the unitary probabilityy of the phonon being initially over W,.

After a time interval c, in which a reflexion has occurred,

E1=(< llPli >,<21Pli >,..., <nl Pli >) (2)

Since a wall can not radiate energy towards itse~ <KIPIK>=O.

With a probability matrix P whose entries are <jlPli> with i, j = 1,2,... ,n, and where the
sum of every row must be unity, the position vector after k transitions within the time interval

ke can be given by [1]

Ek = E“Pk (3)

where Pk represents the kth matrix power of P. The ith component of the position vector Ek
represents the probability that a phonon is likely to be at W, after k successive reflections.
Note the probabilities product in (3), which implies that the successive steps are considered as
independent and that the phonon evolution can be regarded as a “Markov Process”.

EO =(e10,e20,..., enw) (4)

For a phonon populatio~ the initial vector EOis given by



where ep is the initial phonon (energy)
Therefore, the ith component of Ek =
transitions.

density, which is
EOPk defines the

For the initial phonon density over the wall surfaces,
be radiated by an omni-directional source

Qw
e,” = —

4Z4,

assumed to be constant over W,.
phonon density over W, after k

spherical waves are considered to

(5)

where !2 is the solid angle of Wj subtended at the source, A, is the wall area and W is the
sound power of the source.

The transition probabilities <jlPli> must be defined by taking into account the area of
each wall surface, as well as the “viewing angle” of the surfaces, as being viewed, for
example, from the centre of W,. The probabilityy of a phonon being radiated from Wi to WJ, as
given by <jlPli>, can be estimated by the solid angle through which W, is seen from the centre

of the wall Wj. To obtain the correct normalisation, these solid angles must be divided by 2n.

The matrix P can be changed into the transition matrix T [1], by accounting for

absorption phenomena. The absorption coefficients et, of each surface and the air sound
absorption coefficient w both being frequency dependent, will be included

where di~is the mean

~, =(l–a, )<jl Pli>e-M” (6)

distance from Wi to WJ.

If the initial density vector EO is multiplied by T, at discrete intervals, defined by the

transition time ~ = 4V/cS [2] ( V=volume, S=total area, c=speed of sound), the sound energy
can be computed in “real time”.

The sound intensity at a particular point {x,y,z), due to diflise radiation from a finite

surface W,, with constant energy density eji is [3]

()e~L2J 1–aJ
l;(x,y,z) =

?r2

where Clj is the solid angle of Wj subtended at {~y,z}.

The total steady-state radiated sound intensity is then [4]

Jr(x,y,z)= ~~ l;(x,y,z)
,=],=(1

(7)

(8)



where k is the last transition where the energy densities over the stiaces have become
negligible.

The sound pressure level can be obtained from the total reflected sound intensity 1, =

p~/3~, where the sound field inside the enclosure is assumed to be neither direct (1 = p2/~ )
nor difise (1 = p2/ 4P). The contribution of the direct sound emitted from the source should

be added to obtain the total sound pressure level L, [5]

Lp=lOlog
[(

w

(2X:- Y )]
—+31r(x,y, z)

5 4m2
(9)

where r is the distance between the receiving point {x,y,z} and the source.

The impulse response can be determined [4] by considering the various k transitions

over a time interval k~

()n e~f2, l—a,
I,(h) = ~

j=l z=

(lo)

The reverberation time T60 can be obtained by determiningg the transition k at which the
intensity level has dropped 60 dB, from the impulse response.

The intelligibility indexes may be determined by the usual integration procedures.

PREDICTION TECHNIQUE

Simulation tests were applied to a simple test case: a cubic enclosure with dimensions
20mx20mx20m and with a 100 W omni-directional point source located at {2.0,10.0,1.5}
referred to a co-ordinate system located at one vortex of the cube. The inside walls of the
cubic enclosure were divided into a total of 54 squares, in order to guarantee a better
constant energy density over each elementary surface and was “lined” with dii%erent materials:
brick, wood panel and acoustic foam.

Values of reverberation times at various frequencies for a cube lined with wooden
panels, calculated for a receiving point located at {10.0,10.0,10.0} are shown in Table 1,
together with those obtained by using the Sabine and the Eyring formulae.

SABINE EYRING PHONON

I 500 Hz 2.68 2.41 2.38

Table 1. Reverberation times



Figure 1 shows thesound decay curves as finction of the distance to source obtained

with this technique and with the classical Eyring theory and also the Barren-Lee [5] “revised
theory”.
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Figure 1. Sound decay as a 11.mctionof distance to source

The results obtained from the different techniques compare very well in all situations
tested.

The contourplot of the steady-state SPL, across a horizontal plane at height 1.5 m, for
the wood panel lined cube is shown in figure 2. The brighter area corresponds to the source
area. The maximum level contour is 129.4 dB, the minimum level contour is 119.2 dB and the
difference between near-lying contours is 0.7 dB.
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Figure 2. SPL contours for a cubic enclosure lined with wood panels



CONCLUSIONS

The phonon transition theory appears to be a valid prediction method for the calculation
of room acoustic parameters as well as sound pressure distributions, thus making it a viable
technique for room acoustics design. Computation is fairly fist being an interesting alternative
to ray tracing procedures.

Measurements in auditoria of generic geometrical shapes are currently being conducted
with the preliminmy results showing a good agreement with simulations.
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